The RCT approach therefore enables tailored design of oxidation and hydrogenation catalysts

It should be noted that results of experiments on young plants, which may be highly susceptible to drought and drought-related mortality due to limited carbon reserves, may not scale directly to large, mature individuals in the field . This study showed high mortality in 2-year-old A. glauca exposed to a fungal pathogen with and without drought, in contrast with field observations of diseased, large adults exhibit severe canopy dieback and are ridden with fungal cankers, yet still survive . Previous studies have yielded similar results: for instance, photosynthesis was shown to be greatly reduced in oak seedlings compared to adults in drought years compared to wet years , and He et al. reported that responses of red maple and paper birch saplings to a 1995 drought were significantly different than those of mature adults. Similarly, since hosts are often able to allocate carbon reserves to compartmentalize canker-causing agents like N. australe within carbon-rich barriers , larger individuals with more biomass and greater carbon stores are able to utilize and direct more resources to defense than younger, smaller individuals. Thus, mature plants can better persist through biotic attack during environmental stress than their younger counterparts and experience various levels of canopy dieback rather than full mortality. Arctostaphylos glauca are obligate seeders, meaning they are killed by fire and must maintain populations by individuals recruiting from seed rather thanresprouting from their base. Therefore, young, small individuals may be of greatest concern for future populations of this species. Because current research is predicting more frequent and extreme drought events , more exotic pathogens , and more frequent fire in these southern California shrublands , hydroponic nft channel populations of A. glauca could decline because small individuals may be highly susceptible to disease and mortality.

A valuable next step for understanding these risks and predicting future shifts in vulnerable chaparral communities would be to monitor young recruiting populations of A. glauca for N. australe for signs of stress, infection, and mortality in the wild.In the face of rapid climate change, it is increasingly important to understand the abiotic and biotic mechanisms driving ecological landscape change. Large plant dieback events can produce major ecological consequences, including changes in vegetation cover , increased fire risk , and changes in hydrology , all of which affect ecosystem structure and functioning . Furthermore, the loss of even a few species can trigger effects on the local food web structure , and increase risk of invasion . The results of this study suggest that small individuals of A. glauca, one of the most common and widespread species the southern California chaparral community, are at high risk of disease and dieback due to opportunistic pathogens and extreme drought. The potential for dieback of Arctostaphylos spp., which provide food for animals such as mice, rabbits, and coyotes and are an important component of post-fire woody regeneration in chaparral, raises concerns regarding changes to ecosystem structure and functioning in the coming decades. Many ecosystems today are facing unprecedented drought ; yet, the interactions of drought and pathogens in wildland settings are difficult to study because the multitude of confounding variables and the challenges of manipulating both the pathogens themselves and climate. Thus, greenhouse studies such as this one are increasingly essential to understand the influences of drought and pathogens as they relate to dieback events, as well as to understand the relationship between stress and shrub/tree ontogeny . Critical questions remain regarding the relative tipping points for large-scale dieback among historically drought-tolerant species such as A. glauca that today are facing the combination of extreme drought and novel pathogens.

These pathogens may not express themselves until there is drought, highlighting the need for broader field surveys and long-term monitoring of wildland ecosystems. An important step to understanding the role of disease in contributing to vegetation change is also to isolate pathogens and test their pathogenicity under varying controlled conditions. This study provides one such step for what appears to now be a widespread, opportunistic introduced pathogen in an important native California chaparral shrub.Extreme drought events from climate change have produced immediate and dramatic effects in recent years, with costs often exceeding $1 billion due to their widespread economic and ecological impacts . Among the ecological consequences is widespread tree mortality, event within plant systems that have historically been considered drought-tolerant . While seasonal droughts are known to be a natural and regular occurrence in arid and semi-arid regions, the increased frequency, duration, and intensity with which they have occurred in recent years is highly unusual . Such extreme droughts, referred to as “global-change type drought” , are predicted to continue, and even become the norm, as a result of human-induced climate change . Consequently, species that are typically capable of withstanding regular drought stress may be susceptible to canopy dieback, and mortality, as a result of shifts in drought regimes . One such plant community that may be vulnerable to extreme climatic change is chaparral. Chaparral shrublands, which occupy approximately 7 million acres throughout California , are a dominant vegetation community in southern California, composed primarily of evergreen, drought tolerant shrubs and subshrub species including manzanita , ceanothus , and chamise . These species are well adapted to the seasonal variations intemperature and precipitation typical of mediterranean climates where hot, rainless summers are the norm . However, mediterranean-type regions like southern California are predicted to experience rapid increases in temperature , and increased drought occurrence and severity ; IPCC, 2013, resulting from human-caused climate change. These regions have thus been designated as worldwide global change “hot spots” .

Indeed, recent studies have reported extensive mortality of chaparral shrub species resulting from global-change type drought throughout southern California . Thus, climate change represents a significant threat to native plant community persistence in this region. A critical topic for ecological research is understanding where, how, and to what extent plant communities will change as a result of increased drought . Studies aimed at understanding the physiological mechanisms behind drought-related plant mortality – and why some plants suffer mortality from drought while others survive – have elucidated a variety of complex mechanisms of plant mortality . These include loss of hydraulic conductance , exhausted carbon reserves , and susceptibility to pests and pathogens due to being in a weakened state from drought . Measuring xylem pressure potential can be a useful index of soil water availability , and dark-adapted fluorescence can be a quick and accurate indicator of plant stress, as values drop significantly in water-stressed plants,. Together, these may be useful tools for predicting plant vulnerabilities to drought and biotic invasion. Landscape variables such as elevation, slope, and aspect have also been shown to correlate with plant water stress and mortality , and can be useful for predicting vulnerabilities during drought. However, major knowledge gaps still remain, and studies combining field mortality patterns with physiological data on plant water stress are rare . Plants employ a variety of complex strategies to cope with drought stress, but generally fall along a continuum of “drought avoiders” or “drought tolerators”. Drought avoidance, also known as “isohydry”, refers to plants that regulate stomatal conductance to maintain high minimum water potentials as soil dries out . While this strategy reduces the risk of xylem cavitation and subsequent hydraulic failure, it may increase the likelihood of carbon starvation, as C assimilation is greatly reduced . Conversely, drought tolerant plants maintain higher Gs, even at very low water potentials, which allows for continued C assimilation but with greater risk of xylem cavitation . These different strategies can have significant implications for ecosystem level consequences of severe drought ; indeed, nft growing system recent studies have linked anisohydry with greater levels of mortality in chaparral systems . An historic drought in southern California provided an opportunity to simultaneously measure physiological stress and dieback severity along an elevational gradient in aclassically drought-tolerant evergreen chaparral shrub, big berry manzanita . A. glauca is one of the largest and most widely-spread members in a genus consisting of nearly 100 species. Its range extends as far north as the Cascade mountains and south into Baja California, though it is most dominant in southern California shrublands . They frequently occur on exposed ridges and rocky outcroppings. In the chaparral shrublands of Santa Barbara County, it occurs from elevations of about 500- 1200m. A. glauca are obligate seeders, and must recruit from the seedbank following fire .

Compared to resprouters, which regenerate from a carbohydrate-rich burl at their base following fire, seeders tend to be fairly shallowrooted , and are thus less able to access deep water sources . Seeders are generally considered to be more tolerant of seasonal drought than resprouters , possibly a mechanism for shallow rooted seedlings to survive summer drought in an open post-fire environment following germination . However, this strategy has also been linked to higher mortality during extreme drought . A. glauca are also known to exhibit anisohydric mechanisms of drought tolerance , and can exhibit extremely low water potentials and high resistance to cavitation during seasonal drought . In 2014, we observed sudden and dramatic dieback in A. glauca in the Santa Ynez mountain range of Santa Barbara, California during an historic drought . The drought that lasted from 2012 to 2018 in southern California was themost severe to hit the region in 1,200 years , with 2014 being the driest year on record . Preliminary field observations indicated greater levels of canopy dieback at lower elevation stands compared to higher elevations. Dieback also seemed to be more prevalent on exposed and southwest-facing slopes, which in this region experience direct sunlight for most of the day. Other studies have reported significant Arctostaphylos spp. dieback and even mortality during periods of extreme drought stress, further suggesting species in this genus are vulnerable to drought-related mortality. Additionally, we observed widespread symptoms of fungal infection – including branch cankers and brown/black leaf discoloration – later identified as members of the opportunistic Botryosphaeriaceae family , suggesting multiple factors may be driving canopy dieback in this species. Drought-related mortality has previously been associated with opportunistic fungal pathogens in A. glauca and other chaparral shrubs , yet few studies have sought to understand the relative levels of drought stress incurred by plants infected with these pathogens, or how stress is related to canopy dieback and/or mortality. A. glauca shrubs are important members of the chaparral ecosystem, providing habitat and food for wildlife through their nectar and berries . Their structure and fire-induced germination strategies also make them significant components of the chaparral fire regime and post-fire successional trajectories . Large-scale mortality of this species could reduce resource availability for wildlife, as well as alter fuel composition and structure in the region, resulting in an increased risk of more intense, faster burning fires. Therefore, the potential continued dieback of A. glauca is of great concern for both ecosystem functioning and human populations alike. Yet because of the heterogeneity of landscapes in this rugged region, it is possible that portions of the landscape will act as refugia for drought-susceptible species. We hypothesized that A. glauca dieback severity is associated with areas of increased water stress across the landscape. To better understand the patterns and trajectory of A. glauca stress and dieback across a topographically diverse region of coastal California, we asked the following specific questions: How severe is drought-related stress and dieback in this region? How do plant stress and dieback severity vary with elevation and aspect across the landscape? How does dieback change across the landscape as a multi-year drought progresses? We chose xylem pressure potential as an indicator of plant water availability, and measured dark-adapted fluorescence and net photosynthesis as proxies for drought-related plant stress and physiological function. To address Question 1, we conducted an initial survey measuring general levels of canopy dieback, shrub water availability, and stress in the region. To address Questions 2 and 3, we conducted a more in-depth study of how shrub water relations and dieback vary with aspect and along an elevational gradient, and tracked changes in dieback severity for the four final years of the seven-year drought. We expected to find areas of low XPP correlated with greater physiological stress responses, and more severe dieback in lower elevation sites and on southwest aspects.