Tag Archives: hydroponic dutch buckets

Potential agricultural losses are exacerbated by a history of pesticide resistance development

Many antibiotics and other common contaminants of emerging concern can be excreted by both humans and animals with little change in their chemical structure . Not surprisingly, pharmaceuticals have been appearing in wastewater, surface waters, and in some cases tap water, over the past few years . Standard wastewater treatment facilities are not equipped to completely remove pharmaceuticals , resulting in these compounds being found in effluent. In addition, even higher concentrations of many pharmaceuticals are released during heavy storms in the untreated wastewater overflow, which then directly contaminate the environment . These pharmaceuticals have been found at biologically active concentrations in surface waters around the world . There is also an increasing effort to use reclaimed wastewater in drought-affected areas, such as Southern California . In agriculture/livestock operations, pharmaceuticals are found in manure that is used as fertilizer, effectively compounding the pharmaceutical concentrations . Current research shows these chemicals tend to be both pseudopersistent in soil and detrimental to soil and rhizosphere microbes . Our recent studies of the effects of pharmaceuticals on aquatic insects show that, at concentrations found in reclaimed water, these CECs can alter development of the mosquito Culex quinquefasciatus, its susceptibility to a common larvicide, and its larval microbial communities . Watts et al. showed 17α- ethinylestradiol, a common birth control agent, and Bisphenol-A, a common plasticizer, can cause deformities in the midge Chironomus riparius. However, because larval forms of aquatic insects develop directly in the contaminated water, their constant exposure is likely greater than most terrestrial insects. Interestingly, many CECs, which were not designed specifically to impact microbes, have been shown to affect microbial communities. For example, caffeine, a common mental stimulant, can alter biofilm respiration, and diphenhydramine, an antihistamine,hydroponic dutch buckets has been shown to modify the microbial community of lake biofilms . Due to such unexpected effects, accurately predicting the consequences of specific CECs, even in model insects, is not yet possible.

This problem is exacerbated by a lack of information regarding effects of pharmaceuticals and other CECs on the microbial communities of any terrestrial insects. Arthropods, such as insects and crustaceans, rely on hormones to grow, develop, mate, and produce pigmentation . However, many pharmaceuticals, especially mammalian sexhormones, are structurally similar to chemicals that these organisms rely on for growth and development. These pharmaceuticals then bind to receptors and either over express or suppress their counterparts’ natural function. This has been seen in birds, reptiles, and arthropods where endocrine disruption occurs, primary and secondary sexual characteristics are modified, and courtship behaviors are changed . Although most arthropod hormones do not closely match those of mammals, their molting hormone is very similar in structure to the mammalian female sex hormone 17β-estradiol. In crustaceans, mammalian hormones have been known to cause both increased molting events and inhibition of chitobiase, the enzyme responsible for digestion of the cuticle during insect molting . In insects, 17α-ethinylestradiol, a common synthetic birth control hormone, has been shown to alter molting and lead to deformities of C. riparius . In addition to these effects, pharmaceuticals have been shown to have delayed cross-generational effects . The cabbage looper is a well-studied polyphagous insect native to North America and is found throughout much of the world . T. ni are yellow-green to green in color and can complete their life cycle in as little as 21 d depending on temperature . This species is a pest on many agricultural crops including crucifers and a variety of other vegetables in both field and greenhouse settings .Currently, there is little to no information regarding pharmaceutical effects at the concentrations found in reclaimed water on the growth or microbial community composition of any terrestrial herbivore. Many herbivores can be exposed to these contaminants after the CECs enter surface waters, soil, and plants from wastewater reuse and unintended discharge. To investigate the function of the gut microbes in insects, several studies have used antibiotics applied at high doses . There is also no information regarding effects of CECs when translocated through plants to terrestrial insects.

To test the hypothesis that common pharmaceuticals affect mortality, development, and microbial communities of T. ni, we conducted a series of bio-assays in artificial diet and on a key host plant utilizing surface water concentrations of common important pharmaceuticals. We used a culture-independent approach by performing a 16S rRNA gene survey on both diet and whole-body insects. Any effects would have potentially important implications from agricultural perspectives. Also, as there is currently no information on effects of CECs on terrestrial insects acquired through a plant matrix, our findings would have possible interest for integrated pest management research.In our study, CECs at concentrations found in reclaimed wastewater were shown to increase mortality of T. ni, especially on artificial diets contaminated with antibiotics, hormones, and a mixture of the chemicals. The mortality effect was also evident when T. ni were reared on plants grown in antibiotic-containing hydroponic growth media. Because plants grown in the hydroponic system contained quantifiable levels of ciprofloxacin in the leaf tissue , and the antibiotic treatments significantly changed the microbial community of the insect , we think this is possibly a cause of the mortality but we cannot exclude direct effects of the CECs on the insects or indirect effects through the plants. Ciprofloxacin is a quinolone topoisomerase IV and DNA gyrase inhibitor that acts by stabilizing the DNA-topoisomerase IV and DNA-girase so that it is no longer reversible . This blocks DNA replication and eventually causes cell death of bacteria. However, unlike bacteria, when higher-level organisms evolved, the A and B subunits of the topoisomerases fused, creating homodimers that cannot be targets of ciprofloxacin , and thus damage to the ribosomes of insects is not a possible mechanism of toxicity. Interestingly, we did not see the increased time to adulthood in T. ni reared on plants compared with those reared on contaminated artificial diet. We postulate the discrepancy is possibly due to a number of factors such as dilution of CECs, as they were acquired from the water by the plants or there was bio-degradation of the chemicals occurring in the plant or by photodegradation. However, recent studies have shown pharmaceutical concentrations in surface waters, which appear to remain constant over the course of several years . More studies would be needed to determine how CECs at concentrations found in reclaimed water for agriculture would interact with current IPM strategies , and how soil matrices would affect the chemical acquisition and translocation by plants. Many insects rely on microbial communities and endosymbionts to grow and develop; however, it has been shown that Lepidoptera species do not have a vertically transmitted microbial community .

In addition, because the effects of microbial communities on T. ni survival and development have not been documented, we present these data only to show that microbial communities change when exposed to CECs, and not as a proven factor influencing survival. We found significant shifts in the microbial community in the various life stages examined within the control treatments notably from third instar to subsequent life stages. A similar result has been reported for mosquitoes and other insects . However, there is one family, Lactobacillaceae, which appears in all treatments and life stages in high proportions, except for adults. They are fairly common in insects and can be responsible for at least 70% of the bacterial community . Lactobacillaceae is responsible for ∼42% of the bacteria in all life stages, followed by Pseudomonadaceae, Alcaligenaceae, and Enterobacteriaceae. Lactobacillaceae have been shown to act as beneficial bacteria in Drosophila ; however, its function in T. ni is still unknown. Alcaligenaceae has been shown to be present in other moths ,bato bucket but Lepidopterans are not thought to have a functional microbiome . There are clear patterns regarding the changes in microbial community proportionality according to the heat map . In controls, third-instar microbial communities are relatively evenly spaced by family. The microbial community becomes predominately Lactobacillaceae for sixth instars and pupae. Once the insects reach the adult stage, their most predominant family is Pseudomonadaceae. This pattern holds in the acetaminophenand caffeine treatment groups as well. Interestingly, the other treatment groups do not share this pattern. For antibiotic- and hormone-treated T. ni, Lactobacillaceae is the predominant microbial family in the immature stages, but at the adult stage microbial community reverts to predominantly Pseudomonadaceae. We suspect that this is because, once the larvae undergo metamorphosis and shed their gut contents in preparation for pupation, they are no longer exposed to the pressures exerted by the CECs on the microbial community. Fig. 3 provides a visual indication of the changes in the bacterial communities over time. The increase in β diversity after eclosion could be due to the larvae no longer being exposed to CECs or diet-borne bacteria after being moved to sterile containers. Also, when bacteria are lost as larvae digest their gut contents during pupation, the microbial β diversity could change. Interestingly, the hormone-treated T. ni follow a similar pattern to those exposed to antibiotics, but their ellipses are always much smaller, suggesting the entire insect population is showing a uniform response within their microbial communities. However, in the mixture-treated insects, larvae displayed a greater average diversity in their microbial community structure than either pupae or adults. This finding has not been shown in any single category of treatment, and we suspect the microbes exposed to mixtures could be experiencing potential interactive effects among chemicals . Such interactions should be the focus of future studies along with investigations of plant rhizosphere bacteria, particularly since we found a difference in the Bradyrhizobiaceae family for all treatments. These results show that a terrestrial insect pest of commercial crops can be affected by CECs found in reclaimed wastewater for agricultural use. Our results suggest that CECs found in wastewater can impact T. ni growth and development, survivorship, and alter their microbial communities. Because T. ni is a common agricultural pest found around the world, feeds on a wide variety of plants, and has a history of developing pesticide resistance, its ability to deal with toxins is likely higher than many other insects. In addition, the responses we observed to CECs could have interesting implications for IPM practices on plants such as lowering the amount of pesticides needed or increasing susceptibility to insect pathogens, as has been shown in mosquitoes . These potential effects may be understated because some insects cannot detect the presence of the pharmaceuticals . However, we do not recommend purposefully exposing crops to CECs specifically for the control of insects because our study documented that these pharmaceuticals are translocated into crops and we do not yet know their possible effects on humans if consumed . We specifically want to note that ingestion of these compounds through uptake and translocation by a plant is not the only way T. ni or any other insect would be exposed to these compounds. Overhead sprinkler irrigation could cause contact absorption by the plants or insects, and simply drinking water on leaves at contaminated sites could expose insects to higher concentrations than were found in plant tissues. In fact, the ciprofloxacin concentration used was less than one-third of the highest rate . We urge caution in extrapolating to plants growing in soil, because variation in soil type and potential soil bacterial degradation could affect persistence [although soil bacteria are often negatively impacted by CECs ]. However, CEC exposures are considered pseudopersistent because they are reapplied with each irrigation. Thus, the effects reported here are likely to be conservative. Additional studies with other insects, particularly those with other feeding strategies, will be necessary before any patterns can be discerned.The growth of the human population places an ever-increasing demand on freshwater resources and food supply. The nexus of water and food is now well recognized. One promising strategy to sustain food production in the face of competing water demands is to increase the reuse of treated human wastewater. Municipal wastewater reuse for food production has been successfully adopted in some regions of the world. For example, Israel uses ~84% treated wastewater in agriculture production .

Each offset credit is equal to one metric ton of carbon dioxide equivalent

Offset programs make cap and trade programs “more attractive and palatable” to covered entities, as offset programs provide more flexibility to determine the lowest-cost method of reducing greenhouse gas emissions.As long as an offset project will be cheaper than internally reducing emissions, capped entities will likely seek out credit for emission reductions through offset programs. Offset programs are beneficial for governments implementing cap and trade programs because it shows that they are trying to work with industry to find lower cost means of reducing emissions to the mandated level. Additionally, now that offset programs are widely implemented, it would likely be more difficult to gain support for a cap and trade program that did not include offset programs. Offset programs are also beneficial for sectors that are target hosts for offset projects because offset projects are a source of improvements and an income opportunity for the host.Typically, the project host receives financial incentives or some sort of technology, facilities, or practice upgrade that they could not afford or would not have undertaken otherwise. Thus, the benefits of offset programs not only affect the capped entities, but also sectors that are otherwise unaffected by the cap and trade program.In the United States, the U.S. Environmental Protection Agency estimates that agriculture accounts for 8% of the country’s greenhouse gas emissions.The EPA estimates that half of these agricultural emissions come from management practices of agricultural soils, including fertilizer application, irrigation, and tillage methods,hydroponic nft and that livestock manure management accounts for 15% of the agricultural emissions.The livestock digestion process accounts for about one third of the agricultural emissions and the remainder comes from smaller sources, such as rice cultivation and burning crop residues.

These estimates do not include carbon dioxide emissions from on-farm energy use.CARB’s Scoping Plan estimates that the agricultural sector contributes to about 6% of the total greenhouse gas emissions in California.CARB also includes estimates of emissions based on the end use rather than the actual source of emissions.When calculated in this manner, 9% of California’s greenhouse gas emissions can be attributed to agriculture and food processing industries.In general, the agricultural sector provides at least two strong avenues for reducing greenhouse gases through offset programs: decreasing emissions from raising livestock and sequestering carbon in agricultural soil.California has already incorporated an offset program that takes advantage of the opportunity to decrease livestock emissions by installing biogas control systems , which capture and destroy methane, on dairies and swine farms.An offset program that takes advantage of the second opportunity to decrease carbon concentrations in the agricultural sector by sequestering carbon in agricultural soil has been used in conjunction with other cap and trade programs and may provide an opportunity for an expansion of California’s offset programs in the future.Many livestock operations manage livestock waste by using anaerobic liquid-based systems in lagoons, ponds, tanks, or pits.61 Manure that is stored in this fashion emits methane,a powerful greenhouse gas that is estimated to have a radiative forcing power, or global warming potential, twenty-five times that of carbon dioxide.Manure management accounts for 15% of the agricultural greenhouse gas emissions in the United States, and CARB’s most recent estimates indicate that manure management accounts for 1% of California’s total greenhouse gas emissions.Even though manure management is not the largest source of agricultural emissions, California’s cap and trade program includes the Livestock Projects Compliance Offset Protocol , an offset program that issues offset credits in exchange for installing biogas control systems , a type of manure digester, on dairies and swine farms.BCSs capture methane from the livestock operation’s manure storage facility before it is released into the atmosphere.The Livestock Protocol permits the captured methane to be destroyed on-site, transferred offsite, or used to power vehicles, but “the ultimate fate of the methane must be destruction.”

The dairies and swine farms may then sell the offset credits that they produce through this offset program on AB 32’s carbon market.The Livestock Protocol is considered a standards-based offset protocol, as it “creates additionality thresholds for particular categories of projects instead of determining additionality individually for each project.”CARB’s standards-based approach for its current offset protocols came under attack in Citizens Climate Lobby et al. v. California Air Resources Board.70 Citizens Climate Lobby argued that CARB’s standards based approach results in non-additionality by issuing offset credits for greenhouse gas reducing projects that would have been completed anyway, which impermissibly enlarges the scope of AB 32, and that CARB should have adopted a project-byproject approach instead in order to perfectly determine whether each offset project is indeed additional to business-as-usual.In addition to determining that using a standards-based approach for offset protocols was within CARB’s authority, the court in Citizens Climate Lobby determined “that the Livestock Protocol is reasonably necessary to effectuate the purpose of [AB 32] and [CARB] was neither arbitrary nor capricious in its promulgation.”The court made this determination by reviewing evidence presented by CARB that less than 1% of dairies and swine farms in the United States install BCSs to dispose of manure, installing BCSs is not a standard or common practice, and that the cost of installing a BCS is the primary barrier to installation.Because farms were not installing BCSs despite other favorable conditions for installation, the court stated that it is not arbitrary for CARB to use installation as the standard to determine additionality.Thus, CARB maintains a standards-based approach, rather than a project-by-project approach, for its Livestock Protocol. The court reached a similar decision regarding CARB’s three other offset protocols.Agricultural soil carbon sequestration offset programs function like other offset programs, but the projects can include switching to conservation practices including no till, conservation tillage, planting cover crops, utilizing high-diversity crop rotation, and other agricultural practice changes in order to increase the amount of carbon sequestered in the agricultural soil and reduce the amount of emissions from farm machinery.

All of these practice changes increase carbon sequestration by differing amounts. The U.S. Environmental Protection Agency estimated that conservation tillage can sequester between .6 and 1.1 metric tons of carbon dioxide per acre per year.The U.S. Department of Agriculture estimated that planting cover crops and improving crop rotations and fallowing practices can sequester between .2 and .4 metric tons of carbon dioxide per acre per year.78 One assessment of the effects of conservation practices on cropland in the Missouri River Basin estimated that the studied area sequesters 9.9 million tons of carbon dioxide per year.Estimates of the global potential of soil sequestration vary greatly, but one estimate says .9 petagrams of carbon per year may be sequestered globally, which is enough to offset one-fourth to one-third of the annual global increase in carbon dioxide concentrations.Soil’s sequestration properties occur naturally when organic compounds produced by plants cycle through plants, animals, and microorganisms to create soil organic matter,hydroponic channel which is where carbon is stored in the soil.Carbon is released from the soil into the atmosphere when it is disturbed due to changes in water, air, and temperature conditions.Thus, reducing tillage increases the carbon sequestered in the soil, and the level of sequestration depends on many variables including soil type, weather, precipitation, temperature, and other factors. Aside from decreasing atmospheric carbon levels, the practices that encourage carbon sequestration boast local benefits such as reducing soil erosion and nutrient depletion while increasing water retention rates.A USDA project that ran from 2003-2006 assessed the effects of cropland conservation practices, including tillage management along with a host of other conservation practices that also sequester carbon, in the Missouri River Basin.84 The assessment determined that conservation practices decreased loads delivered from cropland to rivers and streams by 76% for sediment, 54% for nitrogen, and 60% for phosphorous.85 These dramatic reductions cannot all be attributed to changes in tillage management or other carbon sequestering practices, as those were only some of the measures among many diverse strategies for decreasing sediment and nutrient loss from agricultural soil. Additionally, the assessment noted that carbon that is sequestered in agricultural soil “improves the soil’s ability to function with respect to nutrient cycling, improves water holding capacity, and reduces erodibility through enhanced soil aggregate stability.”So, in addition to sequestering carbon, the conservation practices that are typically implemented in agricultural soil carbon sequestration offset projects provide many important benefits incidental to sequestering carbon.The EU ETS, the Kyoto Protocol, and RGGI, some of the most major carbon markets in the world, currently do not recognize offset credits that are generated from soil carbon sequestration projects.This is most likely “because soil carbon is viewed as difficult to measure, verify, and track.”88 However, some smaller markets recognize this opportunity for carbon sequestration and income for farmers, so some offset programs that generate credits for agricultural soil carbon sequestration are already in existence. In 2010, the World Bank implemented the Kenya Agricultural Carbon Project, which encourages “covering crops, crop rotation, compost management, and agro-forestry.”This method of farming generates credits that are sold to the World Bank’s BioCarbon Fund.Additionally, in 2012, the World Bank created a new farming methodology, approved by the Verified Carbon Standard,that encourages less plowing.Before the Chicago Climate Exchange’s closure in 2010, it verified and traded soil carbon offset credits generated by farmers in the United States using no-till practices.

The Oklahoma Carbon Program currently operates a voluntary program that verifies and issues credits for farmers who use conservation tillage.Canada’s guidance for its future offset programs indicates that it would include an agricultural soil carbon sequestration offset program to address the intensity of tillage operations, adopting crop rotations, and increasing cover crops.If the American Clean Energy and Security Act of 2009, better known as the Waxman-Markey bill, had been approved by both houses of the United States Congress, it is likely that agricultural soil carbon sequestration offset programs would have played a role through that legislation’s proposed nationwide cap and trade program.The agricultural industry was concerned that other industries’ products used by agriculture—fertilizer, diesel, electricity, etc.—would increase in price if the proposed legislation passed, in turn affecting the agricultural sector’s expenses.The National Corn Growers Association devised nine principles relating to cap and trade that had to be met before it would support any climate legislation bill.The first principle is that “[t]he agricultural sector must not be subject to an emissions cap.”The second principle asks cap and trade to “fully recognize the wide range of carbon mitigation or sequestration benefits that agriculture can provide.”The fourth principle expects the USDA to create the regulations and oversee an agricultural offset program.The fifth principle provides that “[t]he use of domestic offsets” is not “artificially limited.”This principle is directly at odds with current caps on offset credits that can be used to meet compliance obligations as in RGGI and AB 32’s cap and trade program. Additionally, the Illinois and Iowa Corn Growers Associations owned Novecta, a group that was working on standardizing a program to reward farmers for no-till practices.Agricultural soil carbon sequestration offset programs were also proposed and discussed in relation to the Lieberman-Warner bill, the cap and trade climate change bill that was introduced in the 110th Congress, just before the Waxman-Markey bill was introduced in the 111th Congress.Considering this significant support for agriculture offset programs, it is likely that an agricultural soil carbon sequestration offset program could have been implemented on a nationwide scale if Waxman-Markey Bill had passed. Overall, agricultural soil carbon sequestration offset programs prove to be attractive because the farmers implementing the change are paid to change their practices.This can be a welcome source of income, especially at a time when farmers, especially small-scale and those most affected by droughts and the changing climate, are having a difficult time maintaining productivity and income.Considering all the factors discussed above, it seems that a future natural step may be to adopt an agricultural soil carbon sequestration program to link to AB 32’s cap and trade program. The possibility has already been recognized in a bill that was proposed to the California State Assembly. The proposed bill stated that new offset programs will be needed in order to supply the highest number of useable offset credits allowed under AB 32.An early version of the proposed bill listed possible offset programs, including offset programs that maintain agricultural productivity while emitting less greenhouse gases—the idea behind soil carbon sequestration offset programs.