Tag Archives: 30 plant pot

We hope that future fabrication designs can benefit and improve on designs that work well

Through our assessment of lab-based chamber systems, we identify unique advantages and challenges associated with each system .Lastly, we offer our perspectives on areas in which technological advances are needed to fill current knowledge gaps.In studying rhizosphere processes, the myriad of complex interactions among members of the rhizosphere are often dissected to two interacting variables such as root-and-soil or root-and-microbes, etc. Each of these interactions inherently operates under distinct parameters and requires specifically designed platforms to effectively answer different research questions. This review is structured in a way that first describes each rhizosphere process briefly and then reports on the specific growth chamber systems designed to facilitate experiments for answering related research questions. The major rhizosphere processes discussed below include root system architecture, physicochemical gradients in the soil, exudation patterns by the roots and interactions between roots and nematodes, fungi or bacteria. Root system architecture encompasses structural features that provide spatial configuration such as root length, width, spread and number and is an important rhizosphere parameter in regulating soil porosity, and nutrient and water uptake efficiency by plants . Plants have been observed to “sense” and direct root growth toward nutrient sources in soil, and the RSA of a plant exhibits great malleability in response to environmental stimuli which in turn, influences microbial communities . For instance, bean plants grew deeper roots under drought conditions to enhance water foraging capabilities while low phosphate conditions stimulated the formation of dense lateral roots involved in P uptake from upper soil layers . Given that most soils are heterogenous,black plastic nursery pots understanding the RSA of plants becomes critical in improving resource use efficiency and agricultural yields . Often, RSA in pot-grown plants is investigated by excising the roots via mechanical means such as root washing or blowing with compressed air . These methods are, however, time-consuming, cause inevitable damage of fine root hairs and result in loss of spatial and temporal information .

An appealing alternative for studying RSA is the use of rhizotrons. Rhizotrons were initially constructed as underground facilities designed for viewing and measuring roots in the field . In the lab, the rhizotron implies a chamber constructed using two vertical sheets with at least one or both of the sheets being transparent and/or removable . This allows repeated visual inspections of individual roots; a feature unachievable with destructive sampling. In some cases, the word “rhizobox” is used for a similar set up although this was first introduced in as compartmentalized systems to separate the root and soil compartments . Rhizotrons/rhizoboxes are often constructed with PVC or acrylic materials and come in many sizes to accommodate different plants with soil or soil-less substrates . Root growth and morphology in the rhizotron can be tracked by a variety of methods ranging from manual tracing onto a plastic sheet, using handheld or flatbed scanners to fully automated time-lapse imaging camera systems . Data can be subsequently analyzed with a wide range of software packages . Affordable and robust RSA imaging platforms using rhizotrons have also been developed for increased accessibility in low-income countries . The versatile construction of a rhizotron design for RSA studies has inspired many variations. For instance, ara-rhizotrons were designed to enable the study of 3D canopy competition with simultaneous root growth observation in an Arabidopsis plant population . The horizontal and radial design of HorhizotronTM and mini-Horhizotron consisting of transparent quadrants attached to a central chamber were developed to study lateral growth of roots in a semi-3D space and to perform post-transplant assessment . The separated quadrants can also be used with different soil substrates simultaneously to study substrate effects on root growth . A rhizotron fitted with water-tight gasket seals has also been used successfully to investigate the RSA of plants under water-logged conditions . Despite the continuous real-time visual read-out, most rhizotron designs suffer from inevitable loss of information from roots occluded by soil particles. The GLO-Roots system overcomes this by imaging from both sides of the rhizotron while using bio-luminescent roots to create higher contrast against the soil, enabling quantitative studies on RSA . Following advances in engineering and device fabrication, more rhizotron variants adapted to specific plant growth conditions can be envisioned. In a typical topsoil, approximately half is composed of solid minerals and organic matter while the rest is a fluctuating composition of water and gas filled spaces influenced by environmental conditions and uptake/release of solutes from plants . Changes in gaseous and hydrologic parameters, such as ions, O2 and moisture among others, create a spatially complex environment that influences microbial communities and overall plant health.

These physicochemical fluxes are heterogeneously distributed along roots and vary with root types and zones . Often, they exist as gradients in the rhizosphere , thus emphasizing the need for non-destructive sampling in order to accurately capture processes occurring at biologically relevant times and scales. Rhizotron chambers with a visually accessible rhizosphere allows in situ and continuous mapping of these gradients in the soil through the use of different types of imaging methods. For instance, photo luminescence-based optical sensors enable in situ, repeated detection of small molecule analytes in addition to pH , O2 and NH4 . Methods like zymography to detect enzyme activity and diffusive gradients in thin film can be used to map solute concentrations in the soil down to sub-mm scales with high spatial resolution more realistically than traditional destructive approaches. For example, transport and distribution of water in the rhizosphere soil has been imaged on both 2D and 3D planes by coupling a rhizotron with neutron radiography and tomography, respectively and showed varying moisture gradients along the root system with higher water uptake at the rhizosphere compared to bulk soil. On the other hand, if the rhizotron slabs are thin enough , even simple imaging solutions based on light transmission can be set up to capture water uptake by roots in sand . Despite trade-offs in method sensitivity between these two studies, a rhizotron set up is critical in both designs and illustrates its adaptability to multiple equipment. Roots exude a substantial amount of photosynthetically fixed organic carbon into the soil consisting of a wide variety of compounds such as sugars, organic acids, and primary and secondary metabolites . Together with mucilage and border cells , root exudates provide a major source of nutrients for the rhizosphere microbiome . Root exudation is regulated under genetic control  as well as in response to environmental conditions in the soil such as nutrient limitations or increase in toxicity . Exudate patterns are also recognized as one of the strongest drivers shaping the rhizosphere microbiome . As a central player in the rhizosphere ecosystem, it is imperative to understand root exudation patterns to unravel subsequent impacts to the surrounding soil and microbial community. Improvements in analytical instrumentation have made it possible to move from targeted to untargeted explorations with mass spectrometry to create root exudate fingerprints in its entire complexity . Regardless, the impact of such techniques relies partly on our exudate sampling techniques.

Detection of exudates in real-time is difficult due to rapid bio-transformation and sorption to the soil matrix. As such, common collection methods rely on root washing in hydroponic systems to overcome complications in the soil matrix and preserve native exudation profiles. However, a comparison between a soil-based collection method and hydroponic methods showed varied responses particularly in amino acid exudation although the underlying cause was not elucidated . It is possible that the differing growth conditions between hydroponics and soil,greenhouse pot which include differences in gas concentrations, mechanical impedance and microbial spatial composition, can elicit differing root exudation responses to the same environmental stimuli. Rhizoboxes offer the advantage of localized sampling in soil using sorption media such as paper and membrane filters, compound specific ion exchange binding resin or micro-suction cups placed closed to root zones of interest to collect exudates . Moreover, in a rhizobox fitted at the bottom with a porous rootimpenetrable membrane, a root mat is allowed to be formed which is then further transferred onto a collection compartment . The collection compartment containing soil could then be cut into thin slices parallel to the membrane to represent differing distances from the rhizosphere . While this approach can be used to investigate exudate release and sorption under soil conditions, the root mat growth generalizes exudate production in terms of the whole root system and occludes spatial exudation patterns. In a hybrid set up by Oburger et al. , the rhizobox is transplanted to a second specialized rhizobox for continued vertical root growth. This specialized rhizobox consists of a nylon membrane close to the transparent side to restrict root growth into the soil except for root hairs . This creates a vertical flat root mat onto which localized exudate samples can be collected. A comparison of this novel set up to conventional collection methods showed that amino acid exudation rates were most varied among the different methods , further highlighting the need for specialized chambers. Nonetheless, successful implementation of these chambers is still limited to fast-growing plants which can form active root mats. The high density of root mats could also lead to unnatural root exudate levels and an overestimation of rhizosphere effects. In addition, care has to be given to the choice of membrane as selective sorption of certain root exudates onto the membrane may also occur . Free-living nematodes are ubiquitous in the soil. They are beneficial to the plants by playing a role in nutrient cycling and in defense against insects and microbial infections through signaling interactions with the roots . Conversely, infections by parasitic nematodes in the roots increase the plant’s susceptibility to stress and other pathogenic bacteria, fungi, and viruses creating major losses in crop productivity . With an impending rise in nematode infections due to climate change, understanding nematode behavior and interactions in the rhizosphere becomes important to develop appropriate bio-control methods to ensure long term food security .

Traditional nematode studies are performed in petri dishes with agar or culture media . However, these substrates do not accurately emulate the physical textures and heterogeneity of soil and create homogenous solute and temperature gradients which could impact nematode behavior and interactions with the roots . Indeed, nematode motility speed and dispersal decreased in substrates more closely mimicking sand . On the other hand, studying nematode behavior in the soil is a difficult endeavor as its near-transparent body and small size makes it almost indistinguishable from soil particles. Cross-sectioning and staining infected roots make it possible for nematode visualization but they are destructive and provide only static snapshots of cellular changes or nematode behavior during infections . On the other hand, microscopy rhizosphere chambers provide non-invasive detection and observation of nematode activity in the rhizosphere . The roots in these chambers grow between a glass slide and a nylon membrane . The membrane restricts movement of roots except root hairs into the soil while the transparent glass enables microscopy of the roots at high resolution . Coupled with fluorescently stained nematodes, microscopy rhizosphere chambers allowed for non-destructive in situ observations of nematode infection in its host species over the entire life of the parasite . Nonetheless, staining nematodes is an additional challenge as nematode cuticles are impermeable to stains . This can, however, be alleviated by using advanced imaging technologies which eliminates the need for staining. A recent study demonstrated live screening of nematode-root interactions in a transparent soil-like substrate through the use of label-free light sheet imaging termed Bio-speckle Selective Plane Illumination Microscopy coupled with Confocal Laser Scanning Microscopy . Using this set up, researchers were able to monitor roots for nematode activity at high resolution and suggest its possible use in rapid testing of chemical control agents against parasitic nematodes in soil-like conditions . Fungal communities in the rhizosphere are involved in the degradation of organic matter in the soil and subsequent nutrient turnover affecting plant health as well as the microbial community . Fungal biomass often reaches a third of total microbial biomass carbon and almost all terrestrial plants are able to form symbiotic associations with mycorrhizal fungi .

Climate change also has an impact on seasonal changes and timing of precipitation

San Diego’s landscape has historical and cultural importance, with more than 18 federally recognized tribes which is more Indian reservations than any other county in the United States . The combination of these natural open and agricultural lands, pristine coastal areas, diverse urban neighborhoods, and rich cultural history makes San Diego a vibrant and unique region that supports a variety of human communities and industries.Agricultural rangelands and croplands are an important feature within San Diego’s landscape, constituting 5.11% of the county’s total land with more than 250,000 acres and 5,000 farmers . These working lands are deeply rooted in the county’s landscape, holding historic, economic, environmental, and social significance while providing a multitude of local benefits. Not only are these working lands important to the county for providing the public with local products and counteracting urban growth, they have significant economic value. Ranked 12th largest in the nation, San Diego agriculture has an estimated $2.88 billion annual value to the economy . The region’s agriculture encompasses rangeland, pastureland, and cropland, used for growing annual, perennial, nursery, and field crops . Top crops include nursery products and crops, avocados, citrus, and miscellaneous vegetables . While the relatively moderate Mediterranean climate, in addition to a range of micro-climates, makes San Diego an ideal place to grow agricultural crops and livestock products , there are many challenges associated with farming in the region. San Diego’s current farmers face constraints on water-use efficiency and water availability that limits crop selection and efforts efforts to maximize production while also making a profit. From high irrigation demand,blueberry plant container increasing water costs and land prices, to pervasive pest and plant diseases, San Diego farmers have no choice but to utilize innovative farming techniques and choose smart crop choices .

Due to historic development patterns in San Diego, agriculture is often embedded within urban areas, with more small farms than any other county in the nation. Because of the average size of farms, the agricultural sector is spatially scattered throughout the unincorporated county, which can be difficult for identifying and monitoring existing agricultural land and practices. Nonetheless, San Diego’s agricultural production remains more valuable than many other urbanized areas of California, including San Francisco, Orange County, and Los Angeles combined . San Diego’s agricultural landscape is composed of diverse lands, with varying terrain, vegetation, and agricultural use. These lands provide valuable and beneficial services for the region’s food supply and ecosystems, including creation of wildlife, habitat, food for people and pollinators, and water filtration .At a latitude of approximately 32 degrees North, San Diego is situated in the heart of the subtropical climate zone. The region encompasses a unique landscape, positioned between the coastal zone of the Pacific Ocean to the west and the foothills, interior mountains, valleys, and deserts to the east. Like most areas in California, the region is known for its Mediterranean climate in which it experiences hot, dry summers, and mild winters . San Diego’s climate is characterized seasonally by latitudinal climate influences that cause this subtropical dryness in the summer and midlatitude storm-tracks in a concentrated wet season from October through April . Additionally, coastal low clouds and fog are a defining characteristic of San Diego’s climate. CLCF typically persist throughout early summer months, helping moderate heating, buffer dryness and solar insolation, while also providing cooling and water for the region’s coastal ecosystems . The combination of complex topography, coastal effects, and wide altitudinal ranges coupled with subtropical and midlatitude influences results in a range of diverse micro-climates throughout the region . In addition to impacting temperatures and humidity on the coast and further inland, the combination of these factors produce variability in monthly precipitation during the winter months . With annual precipitation totals varying from as little as 50% to greater than 200% of long-term averages, California experiences the largest yearly variations in precipitation compared to any other region in the U.S .

In particular, the year-to-year variability in southern California is higher than anywhere else in the U.S . The average annual precipitation for San Diego is 10.34 inches , however, historical averages reaching as low as 3.3 inches in 2002 and as high as 22.60 inches in 2005 highlight the region’s large inter-annual variability. Variability in precipitation is primarily tied to the number of extreme precipitation events, known as Atmospheric Rivers . ARs contribute to 68% of extreme-rainfall accumulations in southern California . Figure 4 illustrates the correlation between the number of these top 5% of rainy days and precipitation variability. Given that the occurrence of a few AR events each year dictate floods, droughts , and water availability , understanding these extreme events are important for regional weather forecasting, infrastructure planning, and resource management. The San Diego County Water Authority has served as the wholesale supplier for San Diego since its creation in 1944, working to secure reliable water supply for the region. SDCWA’s water supply sources have changed throughout San Diego’s unique historical periods. Despite these changes, SDCWA has consistently relied on imported water in some capacity . Currently, San Diego County imports around 80% of its water supply, using both local and imported sources . In the past, San Diego relied heavily on a single supplier of water, the Metropolitan Water District of Southern California , which includes water from Northern California and the Colorado Basin. Since the enactment of the Colorado River Compact in 1922, allowing for the diversion of water from the river to surrounding states, Colorado has been a major supplier for San Diego . In 1991, the MWD constituted 95% of San Diego’s water supply . In the last two decades, after an extensive drought that caused MWD to reduce water delivery to San Diego, SDCWA has developed several strategies and long-term plans to diversify the region’s water supply portfolio. These strategies aim to improve the region’s water infrastructure, promote water-use efficiency, and ultimately secure reliability of supply . In 2017, supply from MWD had significantly declined to 40%, allowing for inclusion of other sources. Agreements made with the Imperial Irrigation District, and the Coachella and All-American canals, which source water from the Colorado Basin, contributes another 40% of imported water to San Diego’s current supply portfolio. Local sources contribute the remainder of supply, including groundwater, recycled water, and desalination . Agriculture is one of the many sectors that is greatly dependent on these water resources. With water pricing escalating since the early 1990’s, water costs have been the primary water concern for San Diego farmers .

As drought conditions increasingly threaten the region’s imported water sources, farmers have shifted their focus towards water availability as well . While SDCWA has worked to ensure reliable and diversified water sources over the last few decades, new water sources have proven to be expensive . In the last 12 years, the price of water has tripled, while the revenue from farm products are generally consistent, creating challenges for farmers across the region. Water alone constitutes the largest monthly expense for many farmers . Thus, farmers are eager to adopt strategies that maximize water-use efficiency, minimize use and overall costs, and increase financial returns. For farmers who choose to participate in SDCWA’s special agricultural water pricing, water charges are priced at discounted rates. Nonetheless, costs per acre foot remain high, and much of the sector, specifically nursery, flower, fruit, and livestock farmers, do not participate . Not all of San Diego receives the imported water supplied by MWD and geographically,30 plant pot the majority of the unincorporated area is reliant on groundwater-dependent districts or private wells that are managed separately from SDCWA . Thus, these areas are completely reliant on groundwater resources and are impacted by its availability. The agricultural sector also relies on groundwater resources, and is considered one of the “large quantity” groundwater users . These groundwater resources are often limited due to unfavorable geology, resulting in aquifers with limited groundwater in storage volume and/or groundwater recharge. Several areas throughout the county that are groundwater-dependent, specifically the unincorporated county, face groundwater hydrology issues. Given that agricultural users are not regulated or metered for water quantity, these large quantity users can create localized groundwater problems throughout the groundwater dependent areas . It is clear that water resources, availability, and supply are major focuses for the county, especially the agricultural sector. With the need to limit water use to allow for profits, water concerns continue to be a driving force for the conservation efforts of San Diego’s farming community. It is projected that over the next several decades, California will continue to experience several changes associated with climate change, including sea level rise, precipitation patterns, and temperatures. Amid historic coastline and mountains, San Diego region encompasses many diverse climate zones. In turn, the region will likely experience a myriad of changes with dynamic, complex, and compounded effects. As a result, the county will face several challenges that could ultimately threaten the natural and human landscapes that it supports. While the region’s diverse ecological systems, industries and communities have adapted to San Diego’s variable and seasonal climate, climate change could exacerbate these conditions and ultimately threaten the survival of these valuable systems . As one of the most “climate-challenged” regions in North America, it is critical that the county understand these regional variations in climate impacts and vulnerability .

In the region, climate change will significantly increase yearly average temperature over the next several decades, with projections ranging from 5-10° Fahrenheit depending on the Representative Concentration Pathway greenhouse gas concentration and region . San Diego and neighboring areas will face varying changes in the average hottest day per year, daily maximum temperature and daily minimum temperature because of the region’s diverse topography and distinct micro-climates. Under RCP 8.5, representing a high concentration scenario, the average hottest day per year will increase from the historic range of 90-100° F to 100-110° F in coastal zones, and from 105-115° F to 110-125° F in desert regions . Temperature extremes are projected to increase, with climate warming increasing duration, frequency, and intensity of heat waves compared to historic climate . The probability of heat waves varies regionally, with some locations expected to have a greater probability of increase in the number of extremes, and in either daytime or nighttime heat waves. Extreme temperature events and increasing Tmax will further intensify the impacts of drought . Although it is projected that there will be fewer total wet days and a decrease in the number of ARs globally, these wet events will likely increase in width and length by 25%, in addition to intensity . With a Mediterranean climate that is uniquely balanced between both mid-latitude storms and expanding subtropical zones, projections for California’s precipitation regime show more uncertainty and variability compared to most other Mediterranean climates around the world. While models consistently project future drying over Mediteranean climates globally, projections for California diverge from these trends, becoming wetter in winter aggregate and experiencing increases in mean precipitation . As a result, the region will likely experience wetter winters yet longer, dryer warm seasons, contributing to increased year-to-year variability. With intensified extreme precipitation events, climate models indicate that the variable character of Southern California’s precipitation will continue to increase .It is projected that precipitation will increase during the region’s concentrated wet winter season, while decreasing in both autumn and spring . Warmer temperatures are causing winter precipitation to fall in the form of rain rather than snow, meaning that the snow pack that acts as a natural reservoir for the state’s water supply will be diminished . As less precipitation is stored in these snow pack reservoirs, compounded with warming temperatures, the state is experiencing earlier springtime snow melt . These projected changes in snow pack, precipitation and springtime snow melt will continue to challenge many regions of California, defining the state’s current and future water resources . Although local snow pack is not significant, loss of snow pack in the state overall will negatively impact the imported water supplies that San Diego relies upon.Coastal low clouds and fog that migrate along the West Coast fluctuate on annual and decadal scales, as a response to a combination of naturally occurring climate and weather patterns .