Environmental studies professor Greg Gilbert and Center director Carol Shennan served as faculty advisors to the project, with Leap, garden manager Christof Bernau, and members of the apprenticeship course offering additional advice and information. Research for and development of the web site was supported by funds from the Center’s competitive research grants program .Blueberries offer small-scale growers a potentially profitable “niche” crop that can be developed as a U-pick operation or incorporated into other marketing activities. Although the plants need several years to get established and require careful soil preparation and fertility management, a successful blueberry crop can generate $30,000 to $50,000 per acre . To learn more about the best-performing varietal options for organic growers on California’s central coast, the Center initiated a variety trial of mostly low-chill, highbush blueberries at the UCSC Farm in the fall of 2003. This project is being conducted in collaboration with Aziz Baameur, Small Farm Program Advisor for Santa Clara County’s UC Cooperative Extension office, and Mark Bolda, UCCE’s central coast Strawberry and Caneberry Advisor. Blueberries need well-drained, acidic soil in order to thrive. In November 2003, UCSC Farm manager Jim Leap applied sulfur to the trial site at a rate of approximately 2,000 pounds per acre as well as 3–4 inches of acidic mulch, then created raised beds for the plants. With the help of second-year apprentices Aaron Blyth, Carissa Chiniaeff, Allegra Foley, Estrella Phegan, Ratoya Pilgrim, and Matthew Sutton, round pot the research team planted out 17 varieties of blueberries in January 2004. The trial includes 4 replicates of each variety planted on 3-foot plant in-row spacing with 5 feet between rows.
Peat was applied in the planting hole to further lower the pH. Varieties being tested are: Biloxi, Bluecrop, Duke, Emerald, Jewel, Jubilee, Misty, Oneal, Ozarkblue, Millennia, Santa Fe, Sapphire, Sharpblue, Southern Belle, Southmoon, Star, and Windsor. After planting, the beds were mulched with several more inches of acidic bark, and drip tape was laid on top of the mulch. Plants are irrigated weekly with the drip tape, and during each irrigation vinegar is injected into the irrigation water to maintain a low pH. Phytamin, a liquid nitrogen fertilizer, is being applied through the drip lines monthly during the summer to maintain adequate nitrogen levels and get the plants off to a strong start. Over the next several years, the research group will evaluate a variety of factors, including overall plant vigor, disease and pest resistance, and eventually, harvest dates, fruit taste and quality, and fruit production. Although the first harvest is still 12 to 18 months away, Leap is excited about the trial. “Blueberries offer a great marketing opportunity for small scale organic growers,” he says, adding that, “this project has also created great opportunities for interactions between the Center and our local UCCE advisors.” A blueberry field day organized by the Center, UCCE, and the Community Alliance with Family Farmers was held in early June, bringing farmers and gardeners to the UCSC Farm for a look at the new plantings. Speakers included Baameur, Leap, and Bolda, as well as UCCE researchers Richard Smith, who discussed organic weed management, and Laura Tourte, who talked about blueberry economics and marketing.As an environmental scientist, Center faculty affiliate Deborah Letourneau believes policy decisions should be based on the best information available at the time. That’s why she’s trying to fill an information gap with her latest research on genetically modified plants.
As insect-resistance is bred into major crops, Letourneau wonders how those crops’ wild relatives might be affected if they pick up the new traits. “There’s been a lot of research on crop-to-crop movement,” said Letourneau, referring to the contamination of organic corn grown adjacent to genetically modified corn. “But we don’t know that much about the biology of wild crop relatives. If genes transferred, would it make them more weedy, more hardy, more invasive?” To address these questions, Letourneau, a professor of environmental studies at UCSC, along with doctoral candidate Joy Hagen and Ingrid Parker, an associate professor of biology, have begun a three-year study to see what the consequences would be if GM genes transferred from Brassica plants through cross-pollination to their wild relatives. Plants in the Brassica, or cole, family include many vegetable crops, such as broccoli, Brussels sprouts, cabbage, cauliflower, and kohlrabi, as well as common weeds like wild radish and wild mustard. “Weed problems translate into economic problems for farmers,” said Letourneau, noting that 75 percent of cole crop production in the United States is concentrated on the Central Coast of California. Stubborn weeds require more herbicide applications, with accompanying higher labor costs and environmental impacts, she said, adding that highly invasive weeds can threaten native species on non-agricultural lands, too. Letourneau is a leading authority on the genetic modi- fication of plants. A member of the National Academy of Sciences’ 12-member panel investigating the environmental consequences of GM plants, she also coedited the 2002 book, Genetically Engineered Organisms: Assessing Environmental and Human Health Effects. Parker’s background is in applying mathematical models to ecological risk assessment for GM crops. A growing number of crops are being genetically modified to increase insect resistance. More than 25 percent of corn grown in the United States has been genetically engineered to contain the toxin of the Bacillus thuringiensis soil bacterium, which disrupts the digestive system of a caterpillar.
Transgenic cotton and potatoes also produce Bt toxin. Little is known about the role Bt-susceptible herbivores, round plastic planter including caterpillars, play in regulating the health and spread of wild crop relatives. In their research project, Letourneau and Hagen are protecting wild relatives from caterpillar damage to see what could happen if modified genes moved from Brassica crops to their wild relatives. The simulation is necessary because the research is being conducted in open fields—not inside greenhouses—where risks of contamination by GM plants would be high, said Letourneau. To mimic an effect of gene transfer, the UCSC researchers are spraying Bt on wild radish and wild mustard growing adjacent to commercial cole crops, and they will use models to evaluate the subsequent fitness, weediness, and invasiveness of the weedy relatives, said Letourneau. “We can’t use real transgenic crops, but we wanted to conduct this work where wild relatives live side-by-side with commercial crops,” said Letourneau. Research sites include the Center’s on-campus Farm and agricultural parcels adjacent to natural ecosystems from Wilder State Park to Elkhorn Slough Reserve. Genetic links between crops and weeds are remarkably common, and cole crops are no exception, noted Parker. “In the past, the evolution of many weeds has been driven by genes coming from crops,” she said. “Now those genes will be specially engineered by humans.” Research on consequences for wild relatives is overdue, said Letourneau, noting that field-testing of GM cole crops for California has been under way since 1999. “This kind of research is important now, during the process of risk assessment, to know whether new modified crops should be deregulated or not,” she said. “There are a lot of Bt crops in the pipeline. Anything we can find out now can be used by regulators to make more informed decisions.” Letourneau takes nothing for granted as the research gets under way. The project will use a large number of sample plants on varied research sites, and the experiments will be replicated over three years. Hazards of GM corn, including allergenicity and contamination of adjacent fields, were identified during extensive testing that was required because it is a food. Because similar tests are not required on nonfood plants, it’s harder to know what the hazards might be, and what the probability is that they’ll occur, said Letourneau. “It might be that transgene movement to wild relatives would be no problem at all,” she said. “If we don’t detect any problems or hazards, we’ll feel we’ve tried to provide the data needed for risk assessment.” The three-year project is funded by a $335,000 grant from the U.S. Department of Agriculture.Botta’s pocket gopher , the smallest gopher in the U.S. at approximately 6 inches long, is the dominant species in central California. The pocket gopher is named for the external cheek pouches it uses to carry food and nesting materials down into tunnel storage areas. They feed on a wide variety of vegetation, but generally prefer herbaceous plants, shrubs, bulbs, and trees. Gophers can bear two to four litters per year of up to ten pups each , so populations can climb quickly under ideal conditions. Once weaned, the young disperse immediately, traveling on the surface to search for new, unoccupied territory. Except during the breeding season, pocket gophers are solitary and territorial. Population densities average approximately 30–40 per acre, although up to 200 per acre have been observed where food is plentiful and other conditions are favorable. As they dig their burrows, gophers push soil to the surface, creating mounds of loose soil adjacent to the plugged burrow entrance. A gopher usually creates one to three new mounds per day, excavating and constantly enlarging and moving its main feeding burrow. Gopher numbers are often overestimated due to this activity, and to the mistaken belief that gophers live in colonies. Because they are quick to repopulate empty burrow systems it may appear that the burrows are populated communally, when in fact gophers will fight to the death to protect their territories.By thinking of a gopher infestation as a pest problem that has similar attributes to, for example, an insect pest problem, cultural practices can be adjusted to create conditions that discourage the presence of gophers. As with other pests, gopher populations increase when food is abundant. Leaving overwintering corn trash or other culls that do not decompose rapidly in the field will boost the gopher population. Weeds that gophers prefer to feed on, such as malva , dock, clovers and dandelions, will also help maintain a higher wintering population. Artichokes and other crops with large crowns are especially susceptible, and some growers have begun to grow these crops as annuals in part to avoid building up gopher populations in the winter season. Young orchard trees seem to provide the most winter-time food for gophers; however, mature orchards and vineyards also harbor gophers through the winter months.Some cover crops can both benefit your crop rotation or winter fallow and help limit gopher populations. Research has shown that gophers much prefer clover cover crops over small grains such as barley, oats and Sudan grass. And although most clovers attract gophers there is a sour clover that appears to discourage them. This can be used as a winter cover combined with a small grain to move populations out of the fields to areas where they can be trapped. I’ve also observed that gopher populations move to farm road edges and other border areas when a winter cover crop of bell beans or fava beans are planted. A focused trapping effort in these areas during winter will help limit breeding numbers. Be aware, though, that many studies have shown gophers to be extremely adaptable in their feeding habits, so no cover crop will guarantee a gopher-free field. When considering rotations on diverse farms, include gophers in the equation. If you follow a crop that attracts gophers, such as potatoes, with another that they feed on, like onions, you will exacerbate gopher problems by providing a continual food source. However, if you follow potatoes with a sour clover or small grain, populations are less likely to rise.Farmers and gardeners have tried all manner of barriers to discourage gophers. These include wire mesh, gravel, trenches filled with glass and rocks, corrugated roofing, even trenches with buried buckets that act as pitfall traps—anything that presents an obstacle for persistent gophers. These all have some effect on slowing invasions. The most promising approaches are those that create both an above- and below-ground barrier. One of the most successful is fencing made of steel corrugated roofing. Not only is it impenetrable, but gophers cannot climb the exposed portion. Because gophers can scale a welded wire fence, above-ground wire barriers must have the wire bent outward at the top or a wooden or metal rim installed. I’m currently experimenting with a material called “Root Guard,” a thirty-six inch wide plastic sheeting seventy mils thick used by landscapers to keep bamboo roots from spreading.