Category Archives: Agriculture

Correlations between variables with p-values less than 0.05 were considered to be significant

It is not yet clear how this legacy nitrogen may respond to changing hydrologic regimes and variations in AgMAR practices, and more importantly, if flooding agricultural sites is enhancing nitrate transport to the groundwater or attenuating it by supporting in situ denitrification. Denitrification rates in the subsurface have been reported to vary as a function of carbon and oxygen concentrations, as well as other environmental factors . While total soil organic carbon typically declines with depth , dissolved organic carbon can be readily transported by water lost from the root zone to deeper layers and can therefore be available to act as an electron donor for denitrification . Oxygen concentration in the vadose zone is maintained by advective and diffusive transport, while oxygen consumption occurs via microbial metabolic demand and/or abiotic chemical reactions . The effects of drying and wetting cycles on oxygen concentrations in the deep subsurface are not well documented. However, in 1 meter column experiments, there is some evidence that O2 consumption proceeds rapidly as saturation increases and rebounds quickly during dry periods . These variations in oxygen concentration can influence N cycling and thus, transport to groundwater. Variability in nitrate concentration has also been linked to heterogeneous subsurface properties, rainfall events, seasonality of flow and other local geochemical conditions across a diversity of settings However, a gap currently exists in quantifying N attenuation and transport from agriculturally intensive regions with a “deep” vadose zone while accounting for the many competing N cycle reactions and transformations, as impacted by different hydrological regimes imposed under AgMAR. The application of AgMAR itself can vary in terms of the hydraulic loading and rates used, as well as the duration between flood water applications. These can in turn affect water retention times, O2 availability, consumption of electron donors and consequently, denitrification rates . For example, denitrification rates were found to increase with increased hydraulic loading and with shorter times between flood applications within the vadose zone of a rapid infiltration basin system used for disposing of treated wastewater . In shallow, sandy soils, high flow rates – above an infiltration threshold – were negatively correlated with denitrification rates,plant pots with drainage suggesting that an optimum infiltration rate exists for a given sediment stratigraphy to maximize NO3 – reduction .

Given the immense stratigraphic heterogeneity in alluvial basins, such as in California’s Central Valley, a range of optimum infiltration rates may exist with implications for managing AgMAR differently based on the geologic setting of the intended site. Therefore, the objectives of this study are to: a) understand the effects of varying stratigraphy and hydrologic regimes on denitrification rates, and b) identify AgMAR management scenarios that increase denitrification rates, such that the potential for N leaching to groundwater is decreased. Herein, we focus on an agricultural field site in Modesto, California located within the Central Valley of California, which is responsible for California’s $46 billion-dollar agricultural economy . The field site typifies the deep vadose zones prevalent in this region, which are characterized by heterogenous layered alluvial sediments intercalated with discontinuous buried clay and carbon rich paleosols . These discontinuous, layered features, especially the paleosols and areas of preferential flow, are typically associated with enhanced biogeochemical activity, higher carbon content and availability of metabolic substrates such as nitrogen . These regions respond to and change depending on environmental conditions such as water content and oxygen concentration in situ that are influenced by the hydrologic regime at the surface and may be important for NO3 – attenuation and reduction prior to reaching the water table. Therefore, this study considers varying hydrologic regimes and stratigraphic variations that are prevalent in the region. More specifically, at the Modesto field site , large amounts of legacy N already reside in the vadose zone, while N fertilizer application and irrigation occurs throughout the spring and summer months. AgMAR, if implemented, occurs during the winter months as water becomes available. Therefore, we focus here on quantifying the effects of AgMAR on N cycling in the deep vadose zone and implications for NO3 – contamination of groundwater at this characteristic agricultural field site. We also investigate the specific AgMAR application rates that would increase the effectiveness of in situ denitrification under different stratigraphic configurations through the development and testing of a reactive transport model. We believe such an analysis provides important insights for the successful application of AgMAR strategies aimed at improving groundwater storage in a changing climate.

Reactive transport models can be beneficial tools to elucidating N fate and transport in deep vadose zone environments. Herein, we develop a comprehensive reaction network incorporating the major processes impacting N transport and attenuation, such as aqueous complexation, mineral precipitation and dissolution, and microbially mediated redox reactions. While using the same reaction network, we implement several numerical scenarios to quantify the range of denitrification rates possible under different AgMAR implementation strategies and stratigraphic configurations . For the latter, we used four different stratigraphic configurations with a low permeability layer on top including i) two homogeneous textural profiles, ii) a sand stratigraphy with a discontinuous silt band, iii) a silt stratigraphy with a discontinuous sand band, and iv) a complex stratigraphy more representative of the field conditions investigated by electrical resistance tomography . The top layer served two purposes, one, it allowed the net infiltration rate to be calibrated to match measured average field infiltration rates of 0.17 cm/hr and two, it represented the expected increase in sediment uniformity expected in ploughed or tilled layers in agricultural settings. While, the impact of the top layer resulted in water being delivered more slowly to the heterogenous sediments below, varying rates of percolation occurred after reaching below the more homogenous layer allowing us to examine the effects of heterogeneity on nitrate transport and fate in the vadose zone. For each stratigraphy, we further varied the frequency and duration of water per application to investigate the impact of different AgMAR implementations that are similar to recent field trials conducted throughout the state . In addition, we tested the effect of antecedent moisture conditions on N biogeochemistry within the more complex stratigraphy by setting the model with a wetter initial moisture profile. Overall, a set of 18 simulation experiments were used to isolate and understand the contribution of different AgMAR strategies to enhance or decrease denitrification rates in deep vadose zone environments with homogeneous and banded configurations. A detailed model setup and numerical implementation is provided in Section 2.3. Although our reactive transport analysis was guided by a particular field site that is classified as a “Medium to Good” site for MAR , our aim was not to replicate site conditions in its entirety, but rather to enhance our understanding of how hereogeneity might impact nitrogen transport and fate under MAR.

The study site is an almond orchard located in California’s Central Valley, southwest of Modesto, and north of the Tuolumne River . The surface soil is classified as a Dinuba fine sandy loam . The site is characterized by a Mediterranean climate, with wet winters and hot, dry summers. Average annual temperature and total annual precipitation are 17.5° C and 335 mm, respectively. As suggested above, the vadose zone typifies the valley with contrasting layered sequences of granitic alluvial sedimentary deposits consisting of predominantly silt loams and sandy loams. We therefore use these textures to design our modeled stratigraphic configurations with and without banded layers. The groundwater table in the study area typically occurs around 15 m below ground surface. Soil properties including percent sand, silt, clay, total N, total C, and pH are shown in Table 1.To specifically characterize the textural layers and subsurface heterogeneity at our site, we used electrical resistivity tomography . ERT profiles were generated along a 150 m transect to 20 m depth prior to flooding to quantify subsurface heterogeneity while the subsurface was relatively dry . Further,plastic plants pots to validate the texture profiles generated by the ERT data, a set of six cores were taken along the transect of the ERT line down to nine meters with a Geoprobe push-drill system . The first meter of the core was sampled every 25 cm. Thereafter, cores were sampled based on stratigraphy as determined by changes in color or texture. The ERT profiles were used to develop the stratigraphic modeling scenarios and the coring guided the specification of the hydraulic parameters. Redoximorphic features were noted throughout the cores. centrifuge tubes with 40 mL of 0.5% sodium phosphate and shaken overnight . Samples were hand shaken immediately before a 2.5 mL aliquot was taken 11 seconds and 1 hour and 51 minutes , respectively after shaking and placed in a pre-weighed tin. Tins were oven dried at 105°C overnight and Statistical analysis was used to help guide the development of the geochemical reaction network. First, correlation analysis was used to inform the choices of primary geochemical species on the basis of the strength of their relationship with N2O. Second, on the basis of cluster analysis, stratigraphic configurations with different textural classes were developed. In particular, a Spearman’s rank correlation was conducted on the dataset including several physical and geochemical measurements collected on the soil cores. Specific variables included pH, N2O, NO3 – , NH4 + , DOC, Fe, Mn, S, total C, percent sand, silt, and clay, and depth. Variables were standardized using the median and mean absolute distance because most variables were found to be non-normally distributed based on the Kolmogorov-Smirnov test. To further understand how the data grouped, a cluster analysis was conducted using the partitioning around medoids method for the same set of variables. Interestingly, data were found to group according to textural classes and depth, which provides a mechanism to develop the modeling strategy around these textural profiles.Several scenarios were developed based on the soil textures identified in cores and the ERT profiles to provide insights into the effect of stratigraphic heterogeneity and AgMAR management strategies on NO3 – cycling in the deep subsurface, as described in section 2 above.

The five stratigraphies modeled in this study are shown in Figure 1. The limiting layer in the ERT scenario spans 187 to 234 cm-bgs based on field core observations. For each lithologic profile, three AgMAR management strategies were imposed at the top boundary between 20 m and 150 m of each modeled profile . For each AgMAR management strategy, the same overall amount of water was applied, but the frequency, duration between flooding events, and amount of water applied in each flooding event varied : a total of 68 cm of water was applied either all at once , in increments of 17 cm once a week for four weeks , in increments of 17 cm twice a week for two weeks , and all three scenarios with an initially wetter moisture profile . Note, that for all scenarios, the same reactions were considered, the water table was maintained at 15 m, and temperature was fixed across depths at 18°C, the mean air temperature for January to February in Modesto. For all scenarios, the modeling domain consists of a two-dimensional 20-meter deep vertical cross-section extending laterally 2,190 m and including a 190 m wide zone of interest located at its center, thus distant from lateral boundaries on each side by 1,000 m to avoid boundary effects. The zone of interest was discretized using a total of 532 grid blocks with a uniform grid spacing of 1 m along the horizontal axis, and a vertical grid spacing of 0.02 m in the unsaturated zone increasing with depth to 1 m in the saturated zone. A maximum time step of 1 day was specified for all simulated scenarios, although the actual time step was limited by specifying a Courant Number of 0.5, typically resulting in much smaller time steps during early stages of flooding. Before each flooding simulation, the model was run first to hydrologic steady state conditions including the effect of average rainfall . The water table was set at a depth of 15 m by specifying a constant pressure at the bottom model boundary , and the model side boundaries were set to no-flow conditions. Under these hydrologic conditions, the model was then run for a 100-yr time period including biogeochemical reactions and fixed atmospheric conditions of O2 and CO2 partial pressures at the top boundary, a period after which essentially steady biogeochemical conditions were achieved, including the development of progressively reducing conditions with depth representative of field conditions.

Farmers’ crop choices are influenced by a portion of the Farm Bill that rewards certain crops over others

Instead, it subsidizes the production of cheap fats, sugars, and oils that fuel obesity; creates profit for food processors and corporate farmers; and supports agricultural practices that damage the environment, with long-term consequences for our health. The upcoming Farm Bill reauthorization requires that those concerned about health and well-being become involved in this issue and demand not only good economic policy but also sound health policy. In this article, we outline 3 major public health issues influenced by American farm policy. These are rising obesity; food safety; and environmental health impacts, especially exposure to toxics and pesticides.Two thirds of American adults are overweight and one third are obese.Though the prevalence of obesity remained stable through the 1960s and 1970s, America experienced an increase of more than 50% per decade in the 1980s and 1990s. These trends have significant long-term implications for our health and quality of life. The three leading causes of death in the United States are all associated with poor diet and overweight. Diabetes—America’s 6th leading cause of death—is also dramatically rising. The term adult-onset diabetes has become Type II diabetes as more young people develop the disease.If obesity trends continue, the lifetime risk of developing diabetes will be 1 in 3 for children born in 2000.There is increasing likelihood that for the first time in American history this generationof children will live shorter lives than their parents.The young and poor are most affected by rising obesity, but these trends hold for both sexes, all major racial and ethnic categories, geographic regions,growing raspberries in pots and socioeconomic strata.As Americans loosen their belts, they must also open their pocketbooks, because poor diets create additional costs to society.

Not only is poor diet linked to the major causes of death and increased medical spending, but it also carries other costs: overweight persons retire earlier, go into nursing homes at younger ages, have higher absenteeism rates, and are more likely to be disabled.The costs of obesity are borne not just by obese individuals but also by the public who supports their care: half of obesity-related medical costs are borne by public systems funded by taxpayers—Medicare and Medicaid.Public health professionals have achieved limited success in reversing obesity trends. Their main efforts focus on educating the public about the importance of individual behaviors and by supporting legislation to alter food and physical activity environments, especially in schools. But an unavoidable obstacle to success is the American food supply, which continues to provide an overabundance of cheap fats, oils, and sugars.Typical supermarkets and convenience stores contain an abundance of cheap, unhealthy food items. If tomorrow every American woke up and refused to consume anything but the foods recommended by the US Department of Agriculture Dietary Guidelines for Americans, there would be a catastrophic food shortage. Although the USDA guidelines recommend the consumption of fruits and vegetables as part of a balanced diet, the food system falls drastically short of providing enough fresh fruits and vegetables to meet their recommendations.The public health community has been slow to examine the link between food policy and public health. Until now, most attempts to reverse the American obesity epidemic have focused on changing consumer behaviors, but the results are depressingly inadequate. Little attention has been focused on examining the “upstream determinants”; namely, the food supply. Just as Americans have failed to ask why there is not enough healthy and affordable food, the public health community has failed to adequately consider what policies are driving the obesity epidemic. By following the pathway of public funds to what and how Americans choose to eat, one finds that American farm and food policies are major vectors of diet-related disease.

Fruits and vegetables are good for us. They lower the incidence and mortality of the most common chronic diseases in America.Yet less than 4% of totalUS cropland in 2004 was planted with fruits and vegetables.What is happening on the rest of our farmland? These acres are dominated by the 8 main “commodity” crops . Why is this the case? Government agricultural policies extend from the 1930s when federal policy-makers passed laws to create price stability and ensure the long-term economic viability of farming, particularly for family farmers. But in the 1970s, farm policy shifted away from maintaining stable prices to maintaining low prices and maximizing production of certain commodity crops that could be bought and sold on the international market. Direct payments were established to encourage competition and increase production, thereby lowering the price of these commodities. Farmers rely on government payments for economic stability, so they plant the crops that farm policy encourages them to grow. Seventy to 80% of all farm subsidies are directed toward the 8 commodity crops, which together cover 74% of US cropland. Farmers growing “specialty crops” such as fruits and vegetables are not eligible for direct subsidies and are penalized if they have received federal farm payments for other crops. In addition, large farms, which make up only 7% of the total, receive 45% of all federal payments. Meanwhile, small farms, which are 76% of the total, receive just 14% of the payments.The end result is a government-structured food supply that heavily favors just a few crops, grown by large-scale farming operations that fail to satisfy the healthy dietary needs of Americans .Certain subsidies provide a critical safety net to family farmers, but food processors are among those who gain the most from government payments. Processors have profited from the conversion of these subsidized commodities into processed foods sold at ever higher prices despite lower nutritional content. Between 1980 and 2000, consumer food expenditures in the United States increased two and a half times to $661 million, while the farm value of these foods increased only one and a half times. During this period, the proportion of each food dollar that went to farmers dropped from 31% to 19%, meaning that 81 cents of each dollar spent on food in 2000 went to non-farm-related activities, including labor, packaging, transportation, and marketing .

Our food system provides greater rewards to those who process, market, and distribute food than to those who actually grow it. Food processors, with proportionally more of their funds available for marketing, have been successful at creating new foods with desirable characteristics: low cost, convenience, high energy density, and appealing taste .13 With the additional support of government-sponsored product and processing research at land grant universities, these innovations use cheap agricultural inputs to make tastier and longer lasting foods with higher profit margins. Processed grocery foods dominate supermarket sales , and simultaneously the consumption of added fats and sugars has increased . Americans are eating more food, most of which is unhealthy. Between 1970 and 2000 the average consumption per person of added fats increased38% and average consumption of added sugars increased 20% . Researchers estimate that if we acted rationally and in our best interest, the average person over age 4 would consume about 2350 calories each day.Yet our food supply makes available 3800 calories per person each day. The price of fresh fruits and vegetables increased 118% from 1985 to 2000, and the price of fats and oils increased only 35%. Consumers are price sensitive, such that even small changes in the price of healthy foods affect their consumption.Not surprisingly,plant pot with drainage when ingredients are cheap, producers also compete by increasing portion sizes .The cost of the food itself is small relative to the price of preparing, packaging, shipping, and advertising, so the cost of increasing portion size is small relative to the perceived value of larger sizes. Cheap food inputs make it possible for food retailers to double the calories in an item while selling it for only cents more. This profitable strategy offers consumers short-term bargains but staggering long-term costs.While $21 billion dollars were spent under the Farm Bill to support commodity crop production in 2005,Americans are spending $147 billion a year on obesity-related illnesses, not to mention the costs of time, productivity, and quality of life lost.Agricultural policy subsidies come at a cost to public health. The system provides all consumers with excess fats and sugars, but especially vulnerable are children and the poor. Lifetime dietary patterns—healthful or not—are generally set early in life. Unhealthful patterns are important; obese children are likely to remain obese into adulthood. Poor families who live in low-income communities often find themselves living in food deserts, where healthy food options are unavailable but fast food abounds. Many older citizens who live on fixed incomes must choose between medicine and vegetables. Freedom of choice for consumers is desirable, yet we have a food system that increasingly limits healthy choices for large segments of the population, making unhealthy eating the default option.Foodborne pathogens cause approximately 76 million illnesses, 325,000 hospitalizations, and 5000 deaths in the United States each year.This too is related to the Farm Bill. Current US farm policies encourage a system that is both highly centralized and relies on large amounts of imported foods. American food travels through several stages and many miles as it journeys from farm to table—each link presents an opportunity for food contamination. Poorly monitored food imports, the threat of agro-terrorism, and our system of highly centralized food production put the safety of our food system at risk.Though foodborne pathogens most often affect raw foods of animal origin, the 2006 Escherischia coli spinach outbreak demonstrates the vulnerability of our entire food system to contamination.

Despite comprehensive food safety regulations and consistent food sanitation surveillance nationwide, a batch of contaminated fresh spinach from a single farm in Monterey County, California, infected 205 persons across at least 26 states in a 2-month period.This outbreak resulted in 102 hospitalizations and 3 deaths. How does contaminated spinach from one farm infect people all over the country? Spinach from California travels the country as a result of the large-scale centralized production and distribution of our food. When American farm policy changed in the 1970s to encourage low prices and competition between farmers, many went out of business. The farmers who survived were the ones who successfully increased their overall size and their investment in technology. Since 1900, the number of farms has fallen 63% and the size of farms has increased 67% .To reduce costs, large-scale farmers typically use highly centralized and mechanized production practices, including confined animal feedlot operations and monocultures. Though these methods are efficient, they create conditions that put plants and animals at risk of disease and microbial contamination and harm the environment. Monoculture techniques increase the risk of crop disease and deplete nutrients in soil, requiring the use of artificial fertilizers which evaporate, descend as acid rain, contaminate the water supply, and contribute to global warming.To promote rapid growth, cattle are frequently fattened with large quantities of grains that change the acidity of their digestive systems making them more vulnerableto pathogenic strains of E. coli. Increased shedding of such pathogens in animal waste occurs with the decline in the state of an animal’s health and an increase in its stress levels,both of which are exacerbated in CAFOs.Inadequate manure treatment, contamination of nearby fields and water, and contamination of slaughtered livestock are a frequently suspected sources of contaminated foods.To maintain the animals’ health, many producers dose the animals with antibiotics,a practice that poses its own set of problems . Centralization also creates large distribution channels through which contaminated foods may easily spread without aggressive vigilance. Though centralization may make detection of contaminated foods easier, potentially more individuals are at risk if contamination goes undetected. The consequences of a breach in food safety are much greater in this type of system. This is illustrated by the recent salmonella-tainted peanut butter scare, which sickened hundreds of people, caused several deaths, and put the Peanut Corporation of America out of business. Smaller, more isolated food systems are inherently less vulnerable to large-scale contamination.A highly centralized structure also increases the risks of harm from deliberate attacks. Biological agents introduced undetected into the system could result in a major disruption of our food supply. Additionally, high-speed, automated methods of slaughtering and food processing may make contamination both more likely and more difficult to detect.New threats to food safety have also arisen from global food trade.

For many projects the development of sharing networks is just as important as the gardening itself

Then as a young adult, she worked with other farms and Veritable Vegetable, a women’s cooperative and organic vegetable distribution company, all of which resulted in “a lot of influences around cooperative economics, cooperatively owning land, collectively owning land and managing land in that way” . Robinson continues to turn to these influences in conducting the work of the organization. In 2011, Urban Tilth staff visited Boston and the Dudley Street Initiative, a successful example of using a community land trust to provide affordable housing and gardening opportunities under a governance structure of community management. For Robinson, community land trusts can be an important means for residents to have actual control of neighborhood resources and to maintain the possibility for these community members to stay in their homes. “If we do all this work around food and whatever and then the population that we are trying to serve gets pushed somewhere else, what’s the point?” . While land trusts inspire many Bay Area urban agriculturalists, there are still relatively few land trusts working with urban gardens, in part due to the high costs of regional real estate. While trusts have shown interest in supporting urban gardeners, they are also interested in maximizing their impact with limited funds. The exception are small housing trusts and community development corporations, which have placed gardens on their land such as the 55th Street Garden in Oakland formerly run as a market garden by the People’s Grocery and now functioning as a community plot garden owned by the North Oakland Land Trust, a member owned intentional community owned by the Northern California Land Trust called the Mariposa Grove in Oakland, and the Tenderloin People’s Garden run by the Tenderloin Neighborhood Development Corporation. The Oakland Community Land Trust is currently developing a plan to better support urban agriculture, “Our primary role will be to acquire and provide secure access to land for residents and organizations looking to grow their own produce. Recognizing that fresh food options can be scarce in East and West Oakland,round plastic plant pot active urban agriculture and community gardens can serve as a healthy and locally accessible source of vegetables and fruits for neighborhood residents. OakCLT will support the gardening efforts of land trust homeowners, as well as residents and organizations already engaged in agricultural activities”.

McClintock suggests that urban gardens can resist capitalism by using the state and the state’s property. Gardeners can facilitate not only the reclamation of land as commons, but also the promotion of new commons such as genetic material in seeds and cultural culinary traditions . Cultivating the Commons, an action research and education project included the use of land inventory and emphasized public land explicitly. Through advocacy with the HOPE Collaborative and Oakland Food Policy Council, the Cultivating the Commons authors put the responsibility of providing land for production on the City of Oakland. As one gardener stated, “I think the use of public land is meaningful in a kind of normative way. It’s important to have this idea of creating these sort of common spaces” . The Edible Parks Taskforce is an example of attempt to reclaim public commons for community self-determination. This approach has particular traction in contemporary society and also has its constraints and detractors. In addition to gardeners discussing collective management and collective ownership, many gardeners speak to the material, perceived, and lived experiences of engaging non-capitalist value production. Projects create opportunities to reconceive ‘work’ as being outside a wage labor relationship, elevating the importance of social reproduction and promoting non-consumer based, collective experiences that sustain gardeners in various ways. In describing the goal to create housing and gardens on collective land, Tree explained, “And I think everybody should kind of like reclaim that space, that frame and that thought of sustaining ourselves, sustaining each other to building community.” . Another gardener described the difference between public parks as commons and their project, “Just that notion of saying like, this isn’t a store, it isn’t a business, it’s not a house, it’s not a park. I mean it’s interesting because the only form of commons that we have in the city are parks right? But the way you can relate with a park is in very limited ways. Like the park is maintained by the city for you to like walk through and enjoy, but after it closes you have to leave. La Mesa Verde, for example, instituted a system of “community guilds”, a concept borrowed from permaculture, which refers to a horticultural association of biotic and abiotic elements designed to work together to help ensure mutual survival and growth.

For LMV organizers, a guild can provide the space and structure for increased community support and sharing, a fundamental element of commoning. While coordinated sharing events are still in the future goals of the program, participants already use these networks for informal sharing. Program staffer, Patty Guzman, noted, “One family started seeds and brought seedlings to share with all the families. Others have brought cherry seedlings, nopales. Definitely with the fruit harvests we see a lot of sharing – avocado, chayote, peaches.” . Guzman also noted that some guild leaders have gone above and beyond the expectations she originally had. She described one leader of a Spanish-speaking guild on the East Side of San Jose: “She really pitched in for her members. She already knows them outside the class and so she works to help them even if they don’t come to meetings. Like if a participant’s husband doesn’t want her to go to class, would get her the information or plants outside of class time” . Many LMV gardeners are initially attracted to the program by the desire to increase self-provisioning of health food at home, but similar to the WinklerPrins and Souza study of Brazilian home gardens, LMV families demonstrate the links between household self-provisioning and informal economies of exchange. The labor of unpaid self-provisioning is conducted when gardeners’ time is not occupied with wage labor or other household tasks. Gardening, like other household labor and reproductive labor can be viewed as simply an essential support to capitalist economies . But as feminist economic geographers JK Gibson-Graham claim, this view excessively limits our ability to understand the non-capitalist elements of these practices . In other words, LMV gardeners are creating economic networks based on sharing, co-operation and mutual aide. These non-commodified practices promote alternative forms of valuing work and, as such, are alternatives to capitalist class processes. As I have described, gardeners have multiple claims to their practices and experiences of commoning.

Commons, or commoning, is comprised of three animating ideas. First, the commons provides a space or framework in which people are encouraged to reimagine how a community or resource is managed – promoting deeper and wider participation in decision making of those impacted. Second, the commons offers a definition of land access that moves away from private or state ownership. And finally, the commons affirms the production of non-capitalist forms of value. By using both concepts of commons that put pressure on the state to support urban gardens and those who see the power of urban agriculture as going beyond the limitations of a liberal state, the questions of how we reimagine urban governance and economic networks are emphasized. By encouraging forms of social relations based on increased participation and mutual aid, by challenging how land is used and distributed based on development priorities, and by refocusing their attention on producing non-capitalist forms of value and non-waged forms of labor, urban gardeners see their projects as part of the global movement for growing urban commons. Similar to those concerned with communal management for particular parcels of land, urban gardeners have connected their work to the greater struggle for gaining power in urban governance at large. Many gardeners work to try to gain community land management and in so doing gardeners connect their work to other justice oriented urban social movements including housing justice, economic justice, and the like. For these gardeners,25 liter round pot the central question becomes whether gardening is a movement with food production as an ends or as a means towards a larger scale of community organizing. Many urban scholars have documented the growing popularity of urban social movements since the late 1990s. Mayer argues that organizing has continued along three lines. First, urban movements have contested the patterns of neoliberal urban governance and growth politics. Contemporary urban space in the US exists in a constant state of contestation between capital, whose desire is to promote the greatest exchange-value, and urban movements that want to enjoy the use-value of the land . Mayer describes urban movements that contest the corporate control of urban development, accumulation by dispossession, gentrification and displacement. Movements have resisted new entrepreneurial policies, privatization of public goods, and gentrification through different strategies such as placed-based coalitions and symbolic disruptive actions . Second, urban movements continue to fight the dismantling of the welfare state, uniting along lines of social, environmental and economic justice. Third, the anti-globalization movements across the world manifest in the global north in cities where globalization’s impacts can be seen ‘touching down’ through outsourcing, privatization, and other impacts. Purcell concurs and adds that these movements are coalescing around a broad spectrum of issues to work to democratize cities and global processes in resistance to neoliberalism.

I would argue that in this same vein, today’s Occupy Movements express many of the same sentiments of outrage with the impacts of the dismal state of the economy and the highly unequal power dynamics that have lead to this situation. In fact, in Seeking Spatial Justice Soja speaks to primacy of the right to the city as a right to occupy and inhabit space.Haleh Zandi, of Planting Justice in Oakland, advocated that gardening could connect land and housing justice. She is inspired by the idea of “being able to partner with folks whose homes are getting foreclosed on, not only saving those homes from being foreclosed upon, but protecting those people’s rights and figuring out different financial solutions for them, but also building gardens in their homes, so that way, it’s like the banks aren’t taking people’s land and people’s homes and we’re committed to sustainable home environments where we’re not always eating food from 1,500 miles around the world. So, it’s connecting to the international movement for food sovereignty and land sovereignty, but really relevant to what’s happening systematically within the U.S.” . Similarly, in San Francisco, Markos Major of the former Growing Home Garden, saw their primary role, as volunteers in a garden focused on homeless, as “more about social justice… holding the space. We hold the space and people come in like these individuals and gentlemen and other people come and hang out and have a safe space.” . In reflecting on Growing Home’s social justice mission and prospects for continuing their work as they were being evicted, Major considered if only focusing on gardening alliance was strategic, “you know we’re not all the same, that’s the other thing we’ve realized I think. We’ve taken the relationship with Urban Ag alliance as far as we can. It [social justice] is really important and it’s unfortunate that it’s not a priority” . For Jeffrey Betcher of Quesada Gardens, gardening should be part of a movement for community organizing. He identified himself as a community builder, not an urban agriculturalist, although he has gardened and helped many others start gardens for over a decade. Betcher worries the current San Francisco urban agriculture movement shares similar obstacles to the Environmental Movement, namely its whiteness and focus on particular outcomes. Betcher argued, “… if were connected to urban community development and social justice movements, it wouldn’t look that way… People come to me as though of course I agree that if we plop a garden down, we’ll build community. And I have to say gardens don’t build community, people build community” . He went on to describe a garden project that he led that was conceived of and funded by people outside of the community, “if people can be involved at the beginning and really have the agency, can go in and say ‘ok this a shared resource, what do we want to do, it can be anything’. But now I have to go in and say, ‘You should know that if you choose a garden there are gonna be incentives for that’, and then the conversation goes in that direction” .

Agroecology is not simply concerned with ecological sustainability paired with social justice

These trends have allowed US activists to increasingly identify with international calls for food sovereignty.Food sovereignty, which has largely been an international movement, is just now, post-global financial crisis, gaining popularity in the US. Food sovereignty contains an explicit critique of neoliberalism, not just for the wealth inequality it creates but also for the lack of control that communities have over the production of their food system. La Via Campesina has been an international leader in promoting the movement particularly in the context of peasant farmers in the southern hemisphere. Scholars and activists argue that a large part of the power of this movement stems from the southern origins of the ideas coming from groups like La Via Campesina, the MST , and others . Despite its basis in peasant struggles, the framework of this movement is being adopted in the US. Through a study of urban food movements in New York City, Schiavoni found the discourse of food sovereignty to be prominent as activists demanded that control of the food system be put in the hands of the people. In June 2010, the second US Social Forum brought together over 20,000 individuals in the wake of the largest economic depression the nation had faced in generations. At the forum the US Peoples Movement Assembly on Food Justice and Sovereignty drew around 150 individuals representing between 70-90 organizations to discuss the impacts of the global financial crisis and continued development of capitalist-industrial agriculture on farming and other communities in the US and world. At the Assembly, the US Food Sovereignty Alliance was born out of the former US Food Crisis Working Group, and a declaration was made claiming “It is our time to make salt”. La Via Campesina characterizes food sovereignty as a right to define agricultural and food policy from below and as a movement that goes beyond questions of policy to promote democratic control over the resources and processes involved in the food system . Advocacy does not stop with conscious consumerism but instead entails demanding control over productive and political resources to control the right to food.

The movement has been highly critical of international financial institutions, historical inequities in land distribution,25 liter plant pot and the commodification of food . Food sovereignty advocates argue neoliberal policy and institutions have largely perpetuated and frequently caused contemporary food crises, persistent food insecurity and lack of stability in rural areas of the Global South . Starting in the 1980s the liberalization of agricultural trade and development of structural adjustment programs sought to remove perceived barriers to economic progress through the dismantling of farmer subsidy programs, halting of agrarian reform processes, and opening of Global South markets to cheap agricultural imports from the North . Pressure from economic institutions such as the World Bank have promoted industrialized forms of agriculture designed to maximize production and in which peasantry is seen as an obstacle in need of modernization . Food sovereignty advocates dispute the need for the growth of capitalist industrial agriculture, claiming small farmers still feed the majority of the world’s population . Trade liberalization and state adoption and enforcement of these socio-economic policies are seen as primary catalysts in farmer displacement as well as an absolute barrier to local economic development and the promotion of food sovereignty . As such, food sovereignty activists are not just concerned with encouraging state institutions to make better decisions, but also with the redistribution of power in agrarian societies.Land access is a key issue for the international food sovereignty movement, which has impacted urban garden activism in the US. Land grabs, or “large scale land acquisitions” as financial institutions have termed them, have become a normal occurrence worldwide . Agricultural land is an important commodity for financial investors and state entities that see the need for continued enclosure and privatization in order to capture more of this $8.4 trillion land market . But land grabs and neoliberal dismantling of decades of agrarian reform in the Global South has been met with fierce resistance in many places. The MST, Zapatistas, and others have fought to reclaim, occupy, and put lands to community uses. Food sovereignty advocates have highlighted the absolute need for access to and control over landed resources .

Recently the US Food Sovereignty Alliance has launched a campaign to build awareness of the problems of land sovereignty for US food movements and promote resistance. I will explore this work in a later chapter. Food sovereignty advocates have critiqued the contemporary dominant global food system for its emphasis on the commodification of food . Hunger is seen as a direct result of this commodification. Commodity trading markets and the speculation by investors in food commodities have had significant roles in the dramatic rise in food prices in 2007 and 2008 . Commodification is seen as undermining communities’ abilities to value food for nutritional and cultural purposes as well as undermining the autonomy of these communities . Food sovereignty activism has challenged the place of food in commodity markets and sought to “defetishize” the commodity by increasing global understanding of the production processes behind global food. Alkon and Mares argued that food sovereignty is translocal and multiscalar. Food sovereignty as an international movement of peasants and advocates mirrors what Wekerle understood to be the translocal politics of food justice . While food sovereignty activists advocate for community-based economies and local bottom-up food and agricultural policy, local efforts are not seen in isolation from broader collective development. Postcolonial or decolonial work has highlighted the importance of valuing subaltern identities that may be place-based. In Wekerle’s analysis of food justice activism in Toronto, she cites Escobar’s research, which suggested that local and transnational social movements may be deeply connected. Acting through transnational networks, movements may choose, strategically, to utilize place-based identities . Escobar did not see the defense of local as simplistic communitarian politics. Instead he observed “subaltern strategies of localization” working through both place-based practices of connection to territory and culture and more globally oriented strategies that promote a politics from below . As such, food sovereignty holds a place in international social movements oriented against global capitalism. Movement gatherings, such as the World Social Forum and US Social Forum, align activists from diverse local commitments to discuss, debate, and articulate strategies and politics “from below”. Many activists advocate for a focus on deconsolidating power and decision-making paired with the development of democratically governed networks that may work at multiple scales . For food sovereignty advocates, these networks are envisioned similarly as places where self-reliance, autonomy and mutual aid are expressed between individuals and communities .

Food sovereignty has been a key component in many descriptions of solidarity economics, community economics, and other socio-economic models of respect and care. Commitment to the local as embedded in a better global raises the question of egalitarian universals. Patel described a core value of food sovereignty: “There is, at the heart of food sovereignty, a radical egalitarianism in the call for a multifaceted series of “democratic attachments” . Patel observed commitments to feminist, anticolonial, and other food sovereignty-based efforts challenging deep inequities in power. He argued a radical “moral universalism”, that of egalitarianism, may be necessary as a precursor to the kind of formal “cosmopolitan federalism” supported by food sovereignty advocates. While Patel viewed this position as potentially dangerous within the movements because it is promotion of universals as opposed to a completely bottom-up approach to values and practice, he argued this egalitarian commitment is already there. From this standpoint food sovereignty activists argue not just for culturally appropriate foods, but food produced, exchanged, and consumed in networks that value the cultural identities of peoples engaged . In the US and Canada decolonizing food projects have been gaining popularity in many cities. In Oakland, two History of Consciousness PhD program graduates and local professors run the Decolonize Your Diet Project which links spiritual healing and political resistance through reclaiming cultural ways of eating and knowing . Other Oakland organizations and groups like Planting Justice, Phat Beets, and Occupy the Farm host events and conversations with title like “Decolonizing Permaculture” or “Decolonize your Diet” where participants connect questions of cultural identity, racialized histories of place, the consumption and production of food,black plastic plant pots and the transnational movement for food sovereignty. The alternative food movement in the US has been concerned with environmental protection as a core value since its inception . Community food security and food justice activists in the US frequently have added ‘produced by ecologically sustainable means’ to definitions of alternative food systems. And many debates have occurred as to the meaning and practices of sustainability. Within agroecology as a field, an increasing emphasis has been placed on agroecology as engaged with questions of food systems, not just plot based questions of ecology and questions of social movements, not just individual behaviors of farmers or plants. Steve Gliessman, Miguel Altiere, John Vandermeer, and Ivette Perfecto, along with many other agroecological scholars, have led this charge since the 1970s. Food sovereignty, as a peasant-based movement, has had close connections to the field of agroecology as it has developed. Smallholder, traditional agriculture has provided both the socio-cultural and ecological basis of study for the field . Agroecological knowledge production and sharing has frequently, though by no means exclusively, focused on farmer-based approaches and farmer-to-farmer network development . Gliessman traced the roots of agroecology in Mexico to resistance to practices of the Green Revolution, which were seen as harmful to rural agriculture and communities. Gliessman cited the first example of the use of the term agroecology by Bensin in 1930 as one already framing a field of resistance to the overuse and over marketing of agrichemicals . In Mexico, agroecología developed with an emphasis on traditional knowledges of farming system practices, adaptation, and change.

For Gliessman, the example of agroecology’s history in Mexico pointed to this as a field concerned with a goal greater than just developing more environmentally sustainable agricultural production. Agroecology is “a social movement with a strong ecological grounding that fosters justice, relationship, access, resilience, resistance, and sustainability.” . Agroecology has developed with farmer movements that emphasize the importance of traditional and local agriculture . Altieri and Toledo have taken this a step further to argue that an “agroecological revolution” is unfolding in Latin America where epistemological, technical and social changes are occurring which prompt the development of selfreliant, low-input, agro-biodiverse agroecosystems that produce healthy food and empower peasant organizing efforts. This agroecological revolution has been framed as resistant to agribusiness and to neoliberal modernization and trade liberalization. This rapid spread of the agroecological revolution is in part thanks to the diálogos de saberes of La Vía Campasina where connective space is created for dialog between different knowledges, experiences, and ways of both knowing and practicing . Where agroecology, as a field and as practices engaged in by networks of farmers, comes together with agrarian struggles for food sovereignty, it may build significant power for socio-ecological change, as in the case of Ecuador’s food sovereignty law . Similarly, Rosset and Martinez-Torres found an increased adoption of agroecology by agrarian movements in recent years as both adopting agroecology-as-practice and agroecology-as-framing. Agroecology-as-practice has allowed some small farmers to ‘re-peasantize’ by returning to traditional farming practices or rejecting agribusiness. Agroecology-as-framing has given farmer organizations a critical tool in defending existing peasant territories and the repeasantizing of lands in public opinion. For many agroecologists the two struggles are inextricably entangled just as it is for urban political ecologists. Agriculture is a result of complex and constant interactions between social/economic and ecological factors . As documented above, agroecology and rural social movements have changed together, co-constituting each other in the socio-natural processes for better food systems. Justice for food sovereignty activists has multiple and complex meanings. Advocates are not solely concerned with access to adequate food resources or freedom from discriminatory social processes. Food sovereignty engages critiques of colonial/imperialist, capitalist, liberal statist, and anti-ecological socio-economic processes that dominate the contemporary world system. It is a movement that best engages the call for a reflexive approach to food politics . Theorists like DuPuis et al. have conceptualized justices that retain aspects of community autonomy and difference while foregrounding concerns of equity through reflexivity or dialectics .

Mukherjee and Schwabe evaluate the benefits of access to multiple water sources for irrigated agriculture in California

Schlenker et al. indicate that dryland and irrigated counties require two separate estimation equations, unlike the single estimation equation in Mendelsohn and Dinar . A single equation erroneously implies that dryland farms requiring irrigation in the future will have access to analogous large-scale water projects peculiar to the western US at a given point in history. In testing the null hypothesis that each of the 16 climate variables in the original analysis are individually the same in the dryland and irrigated farm sub-groups, they find that between 4 and 6 coefficients are significantly different from 0, depending on the weighting method. Even though Schlenker et al. did not have access to water data on irrigated counties at the time, their F-test was still able to provide sufficient proof of the bias in pooling dryland and irrigated counties into one model. After studying climate impacts to dryland agriculture in the US , Schlenker et al. study the impact of water availability and degree days on California farmland values. Their cross-sectionaldataset represents individual farms, rather than county aggregates.Including groundwater and surface water supply corrects for the omitted irrigation variable bias in Mendelsohn et al. . Importantly, Schlenker et al. include a nonlinear measure of temperature effects on crop growth known as degree days.Their results suggest a positive relationship between the long-run annual availability of surface water and farmland value . They find that the coefficient on surface water is sensitive to water price: as water price per acre-foot increases, this coefficient decreases. They also find that the coefficient on degree days is positive and statistically significant, while degree days squared is negative and statistically significant. They do not use these relationships to estimate impact to farmland value under future climate scenarios. A criticism of degree days, as used in Schlenker et al. , is that it is a measure of weather not climate . In contrast to cross-sectional analysis, Deschenes and Greenstone estimate the impact of yearly fluctuations in weather on annual farm profits using US countylevel panel data , under 3 climate scenarios: uniform, Hadley II , and Hadley II .

When they account for county and year effects,hydroponic vertical farm the results from all three models show a negative impact on profits. With the addition of state-by year fixed effects, all three models show a positive impact on annual profits. Fisher et al. find data and coding errors in the Deschenes and Greenstone model, biasing the original results in the positive direction. Specifically, the climate variable on the average number of degree days has a zero value for several counties, and climate projections varied by state while their historic climate data varied by county. Both of these errors tend to result in a regression toward the mean effect, with warm counties projected to get cooler, and vice versa. In response, Deschenes and Greenstone acknowledge the data and coding errors, and find that the $1.3 billion benefit in annual profits under Hadley II is actually a $4.5 billion loss.However, Deschenes and Greenstone disagree that state-by year fixed effects are misspecified. Like Fisher et al. , they find that state-by-year fixed effects tend to absorb most of the weather variability, resulting in a positive impact on profits. Their purpose in including state-by-year fixed effects is to control for state-level shocks in prices and productivity. To test for this, Deschenes and Greenstone include two additional specifications of year fixed effects: varying according to 9 USDA Farm Resource Regions, and varying according to 9 US Census Divisions. The results from an F-test reject the null hypothesis of zero local shocks. Just as excluding all year effects, as in Fisher et al. , may bias the results downward, including fixed effects at the state level may be too strict, biasing the results upwards. The two intermediate cases of region-by-year fixed effects may present a “happy medium” to this problem. Schlenker and Roberts use panel data to study yield impacts to cotton in the western US.Constructing a dataset that incorporates the entire distribution of temperatures within a day, and across all days of the growing season, they find that the level of yield decline is greater under nonlinear temperature effects than linear ones. Even under a moderate emissions scenario , cotton yields decline across the western US by approximately 30%. Their approach is analogous to statistical crop studies discussed in the Impacts of Climate Change to California section .

Massetti and Mendelsohn test the use of panel data on a Ricardian model using the same Agricultural Census data as Deschenes and Greenstone . They test the stability of climate variables using two panel data approaches against a repeated cross-section Ricardian model. Both panel models have relatively stable climate variables across the six Census years tested. There are $15 billion in welfare gains for a uniform 2.7 C warming and 8% precipitation increase for both panel models, although this ignores distributional welfare impacts. In contrast, the climate variables of a repeated cross-section Ricardian model vary through time. As a result, the welfare calculations also vary through time. Deschenes and Kolstad use panel data on aggregate county-level farm profits to study the differential effects of climate and yearly fluctuations in weather . Their climate variables include a 5-year moving-average of the annual degree days and precipitation, while weather variables are represented by annual degree days and precipitation. While none of the coefficients on annual degrees days are statistically significant with either the historical or CCSM models, their study is instructive in finding that the climate variable has a greater magnitude than the weather variable both in the baseline and climate change scenarios. This corroborates the theory that long-term changes in weather are more costly for some farmers than short-run fluctuations. They tease out which farmers may be most affected by changes in climate by analyzing 15 of the largest crops . They find that certain crop revenues respond positively to degree days , while others respond negatively . A few econometric approaches study specific adaptations.Using a hedonic property value approach, they find that the marginal value of average water supplies from the Central Valley Project or State Water Project decreases as access to other sources increases. Lobell and Field study the use of federal crop insurance and emergency payments/loans in California from 1993–2007. They find that the most common cause of insurance and disaster payments during this period is excess moisture. Cold spells and heat waves are also important causes.

We return to the question posed in the title. What have we been assessing with respect to the human and institutional responsiveness known as adaptation to climatic change in more recent studies on the topic? Several sub-questions are subsequently discussed. To what extent have study results identified economically efficient adaptations? To what extent have economically efficient adaptations reduced vulnerability to climatic changes and/or welfare losses? Have these studies identified limits to adaptive capacity in the agricultural sector, tempering the optimism of earlier studies? We have examined both normative and positive approaches to studying adaptation. Normative approaches have provided insight into which adaptations may be economically efficient equating this with the optimal solution to the farmer’s objective function. There are two such adaptations explicitly represented in the CALVIN/SWAP models: changes to crop mix and water transfers/markets.9 As water resources decline, the resulting crop mix will reflect a decline in field crop acreage, with relatively less change for specialty crops . CALVIN includes water markets as an institutional adaptation. Under climate-induced water reduction scenarios, water is transferred from low-value to high-value use. Implicit in this is the transfer of land from agricultural to urban uses, though this is not directly modeled in these studies. In the WEAP-CVPM framework, Joyce et al. implicitly model the potential for converting to drip irrigation, particularly for thirsty field crops. By contrast, economically efficient adaptation is assumed, rather than modeled, in positive approaches, such as Ricardian models. Ricardian approaches have thus studied how climatic change will impact agriculture in the presence of long-run economically efficient adaptations. Without knowing the actual adaptations undertaken,nft vertical farming this approach provides limited analysis on economic efficiency. Hanemann argues that Ricardian models may not even capture long-run efficiency because economic agents do not behave optimally even in the long run. Studies of both short-run and mid-to-long run suggest that farmers with access to groundwater will tend to increase pumping, increasing the likelihood of aquifer subsidence, to compensate for losses in surface water or increases in crop water demands . Based on definitions in the latest IPCC report, this is maladaptation more than it is efficient adaptation. Schlenker and Roberts suggest that there is minimal adaptation even in the long run when they find that the results of their isolated time series are similar to those of the isolated cross section. Suffice it to say, that Ricardian approaches are capturing some level of adaptation, but it is likely not economically efficient. Panel data studies on farm profits are not able to capture adaptation even implicitly. In both programming and econometric approaches, vulnerability is measured as loss in economic welfare , which is perhaps the greatest limitation of comparative static approaches. Unlike economic welfare, vulnerability is a dynamic concept. For example, the move from field to high-value crops dampens the economic welfare decline caused by a warm-dry climate mid-to-late century. That is, the percentage loss in farm revenue is less than the decline in farm acreage. Water markets are also likely to dampen the welfare loss associated with climate change . However, these high-value crops tend to have lower heat tolerance as temperature increases . Further, field crops are generally regarded as more secure assets with lower associated production costs, than vegetable or tree crops.

The concept of vulnerability is able to capture this insecurity. Vulnerability to overall profit loss may be reduced by the crop mix change, but the increased variability in farm income will also increase vulnerability to temperature increases. Medellin-Azuara et al. illustrate this with high-value orchard crops, where the gross revenue declines even as prices increase. Econometric approaches illustrate that California agricultural land value may be particularly vulnerable to changes in surface water supply and nonlinear temperature effects . Deschenes and Kolstad also illustrate that farm profits may be more responsive to climate than annual fluctuations in temperature and precipitation. Several analyses illuminate our understanding of adaptive capacity. The overarching focus for many CALVIN-SWAP studies is to start with a worst-case scenario approach and see how well we fare even with some of the best-case farmer and institutional responses . Joyce et al. also illustrate an example of adaptive capacity through time. Assuming drip irrigation is more widely adopted in the Central Valley by mid-century, they find that groundwater pumping declines. However, as the climate continues to warm towards the end of the century, the positive effects of drip irrigation are eliminated. Beyond this, a discussion of adaptive capacity is lacking. We have moved ahead in the past 15–20 years from the early agro-economic assessments of the early/mid-1990s, but it appears that we are also standing still. This review has illustrated the various ways comparative static approaches have incorporated adaptive actions to illuminate our understanding of climatic impacts to California agriculture. But, as critics suggest , questions of when and how much farmers and institutions will adapt are left unanswered. Responsiveness — the key characteristic of decision-making — is only vaguely addressed, and, important distributional consequences of climate impacts to agriculture while alluded to, are not identified. Lack of responsiveness and distributional consequences is mostly due to a dearth of individual farm-level data, rather than the incapacity of programming and econometric approaches to accommodate a more specific analysis. Using the same county-level data with more innovations in a comparative static framework could only take programming and econometric approaches so far. There is also a degree of comfort with identifying the primary barrier to moving forward as uncertainty in climate projections. While vulnerability arises out of biophysical processes, it is critical to understand that it is imposed on a pre-existing, dynamic socioeconomic structure . It is important that our economic models do more to capture this structure. 

The adjoint sensitivities are partial derivatives of a cost function with respect to various control parameters

As Indian epidemiological evidence grows and concentration response function models are being developed and improved, future work may benefit from the adoption of a new method. Third, we assume a single diurnal cycle for burning emissions based on satellite information due to limited data of hourly burning activities from local sources . Lastly, since this study focuses on the broader air quality impacts over a large dispersion population, we do not specifically look at individual pollution hot-spots such as Delhi. We do however provide additional assessments for densely populated areas, where Delhi is a main recipient of pollution from agricultural fires .Our approach allows any proposed emissions change to be related to the eventual air quality impacts for the Indian population and sets the stage for future research into crop residue burning. Since we have focused most of our analysis on a single intervention, it would be a natural next step to examine the effects of such interventions in downwind locations using conventional forward modeling techniques. Online modeling considering aerosol-meteorology interactions is also needed to better understand whether these feed backs would suppress or enhance reductions in exposure. Furthermore, since our assumed diurnal pattern of burning may not reflect true fire activities, focused observational work on burning practices is needed to verify that these benefits are realizable. In addition, a deep assessment of any single alternative is needed to determine how plausible such an intervention would be in practice. Our study estimates the total annual premature deaths and the value of mortality risk reduction attributable to PM2.5 exposure from crop residue burning in India over 2003–2019. We also estimate the efficacy of marginal changes to reduce these impacts at the district level,stacking flower pot tower finding that a small number of administrative regions could be prioritized to provide the maximum air quality improvement. We find that six districts in Punjab are responsible for 40% of the nationwide air quality impacts as a result of meteorological factors, the size of the downwind population, and the use of residue-intensive crops.

Our work provides additional insights into potentially low-cost interventions that may significantly reduce the air quality impacts, such as shifting to burning in the morning rather than afternoon and promoting less residue-intensive crops . These findings provide a quantitative basis for the design and optimization of mitigation strategies for crop residue burning on a broad scale, as well as providing new opportunities for future regional and local studies on agricultural fires in India.Consistent with GBD 2018 India Special Report, we calculate emissions from agricultural residue burning using the Global Fire Emissions Database v4.1s from 2003 to 2019 and from 1997 to 2019. GFEDv4.1s is a hybrid emissions inventory that incorporates satellite and ground-based measurements to estimate fire emissions of various types . In particular, it includes a small fire boost based on active fire detections outside the burned area extent, which improves estimation of emissions from frequent and/or short-lived burning events. A comparison using alternative fire emissions inventories is provided in the Supplemental Information. Similar to Koplitz et al. 2016, we define burning-attributable PM2.5 as the sum of black carbon and organic carbon , the primary components of fire smoke-related PM2.5. The diurnal pattern of fire activity in the standard GFEDv4.1s product is estimated using an emissions redistribution approach. The diurnal cycles of burning are estimated based on observational data from geostationary satellites over the Americas, which are then applied to other parts of the world by matching three broad fuel types. While appropriate for many applications over North and South America, this method is not likely to accurately reflect agricultural residue burning in India because the crops grown, crop cycles, field size, and crop practices are different. We therefore apply an alternative diurnal cycle for agricultural residue burning in India based on satellite information from prior literature. The fire activity in sub-tropical areas is typically more intense in the early- to late-afternoon. Over India, the fire counts from MODIS Aqua are three to four times greater than those from Terra during periods of crop residue burning.

Based on this information, and in the absence of more reliable and/or accurate observational data specific to agricultural burning, we assume that agricultural burning emissions have a triangular profile , where 95% of emissions occur between 06:30 LT and 19:30 LT, with a peak at 14:30 LT. Sensitivity to this assumption is explored in Supplementary Discussion.We use the adjoint of the GEOS-Chem atmospheric chemistry and transport model to quantify the sensitivity of annual mean population exposure to PM2.5 in India with respect to emissions sources in the extended Asia domain. Adjoint simulations are performed at a resolution of 0.5° × 0.667° , with 47 uneven vertical layers from the surface up to 80 km altitude. Boundary conditions are saved from global runs at a resolution of 2° × 2.5°. The adjoint model quantifies the effect of changes in any emissions species at any time and any grid cell in India on a scalar quantity J. In our case, the cost function is the India-wide population weighted exposure to PM2.5. The adjoint approach has been widely applied in inverse problems such as air quality impact attribution, which suits the need of this study. We use GEOS-5 meteorological fields from the Goddard Earth Observing System of the NASA Global Modeling Assimilation Office and non- fire anthropogenic emissions from the Emissions Database for Global Atmospheric Research v4.3.2. Each adjoint simulation first requires a conventional, forward simulation to be performed; the data from these forward simulations is compared against observational data in our model validation . Two sets of simulations are run with the GEOS-Chem adjoint model. First, we perform three sets of simulations for three full years which respectively represent a typical rainfall condition for a “flood”, “drought” and “normal” year, based on 20-year monsoon rainfall data in India . Each set includes an adjoint run and a forward run . For each year we calculate the sensitivity of annual population-weighted exposure to PM2.5 across all of India with respect to emissions from December 1st the previous year to January 31st the year after. The first and the last month are discarded due to model spin-up and down, such that data for the whole year are used in the analysis. We then classify 2003–2019, where daily fire emissions are available, into three categories by meteorology type . By applying adjoint sensitivities with gridded agricultural fire emissions corresponding to their rainfall condition, we estimate the total change in population-weighted exposure for the entire Indian population due to emissions from crop residue burning for each year. Second, we perform two other full-year adjoint simulations, where the cost function is modified to annual population-weighted PM2.5 exposure for population in urban areas and highly populated areas, for a typical “normal” year . We define urban and densely populated areas as locations in which the population density exceeds 400 and 1,000 people per km2 , respectively. Besides estimating impacts on India as a whole, this allows us to separately quantify the impact of residue burning on different population groups, as people living in densely populated areas may be exposed to different exposure levels than those living in rural areas .

To inform estimates of long-term trends in exposure and the spatial distribution of impacts, we use the “forward” model GEOS-Chem Classic and perform 23 sets of conventional, forward-running simulations for September 1st to December 31st for each year between 1997 and 2019, where monthly fire emissions are available. September is discarded due to model spin-up, and only October to November are considered for the “post-monsoon season”. Each simulation is performed over the extended Asia domain at a resolution of 0.5° × 0.625° , with 73 uneven vertical layers from the surface up to 80 km altitude. Similar to adjoint simulations, boundary conditions are saved from global runs at a resolution of 2° × 2.5°. Each set includes two simulations with and without Indian agricultural residue burning emissions,ebb and flow which provides information on the long term impact of Indian post-monsoon crop residue burning on population living in neighboring countries including Bangladesh, Nepal and Pakistan. We use meteorological data from the ModernEra Retrospective analysis for Research and Applications, Version 2 and monthly agricultural residue burning emissions data from GFEDv4.1s. This data is also used in our model validation.Here the cost function for the adjoint simulation, J, is the annual mean population-weighted exposure to PM2.5 within India, including 29 states and seven union territories which are further divided into 666administrative districts. The adjoint method quantifies a linearized relationship between emissions and PM2.5 exposure. This makes it well suited for computing the impact of marginal emissions changes of a particular type at a particular location or time. Although there may be non-linearities that are not captured by this approach, the atmospheric processes relevant to PM2.5 ––wet deposition and advection––are accurately represented as linear operations in the GEOS-Chem model. As such, the error due to atmospheric non-linearities is expected to be small. Atmospheric chemistry-transport models depend on emissions inventories to compute air quality impacts, and our estimate and attribution of population exposure is subject to the specific choice of emissions inventory. While various global fire emissions inventories have been developed, differences across inventories such as satellite image interpretation and adjustment for small fires can result in large regional differences in emissions estimates. We select six global emissions inventories, including five commonly used and one newly-developed for Indian agricultural residue burning, and make an inter-comparison by calculating PM2.5 exposure due to post-monsoon crop residue burning using each of the emissions inventories . We find that exposure estimates vary by up to a factor of seven due to uncertainty in emissions inventories . However, we find that this does not significantly affect our conclusions, which are focused on the relative reduction in harm which could be achieved through targeted interventions. Detailed comparison and discussion can be found in Supplementary Discussion.Do political leaders benefit from anti-poverty programs? There is a large and growing literature on the targeting of government expenditures, but less is known about the political effects of distributive programs, particularly large-scale poverty-reduction efforts that target substantial portions of the population. Across Africa, governments have increasingly adopted agriculture subsidy programs in recent years to combat rural poverty and food insecurity, embracing a strategy common in the 1960s and 1970s before structural adjustments programs reduced such market interventions in the 1990s . While the political appeal of agricultural subsidies in countries where the majority of the population is engaged in smallholder agriculture are obvious, there has been little quantitative research on their effects.In part this lacuna stems from the difficulty of quantifying the political effects of subsidy programs. Because subsidy programs may be targeted, often for political reasons , researchers must confront the thorny challenge of teasing apart selection effects from potential treatment effects. This paper contributes to studies of distributive politics by examining Malawi’s Agricultural Input Subsidy Programme , one of the largest and most expensive programs implemented to date. To examine whether the incumbent party, the Democratic Progressive Party headed by president Bingu wa Mutharika, benefited from Malawi’s subsidy program, we draw on panel data from a survey of 1,846 respondents interviewed in 2008 and again in 2010. We proceed in two steps. We first investigate whether the program was targeted at the local level. We propose that because of informational constraints and the weakness of party institutions at the grassroots level, the subsidy is likely to be untargeted with respect to party support and the main determinant of party allegiances – ethnicity – at the village level. Consistent with these expectations, we find no evidence of partisan or ethnic targeting in our sample area. This finding is interesting in its own right, especially given dominant theories of distributive politics that argue whether politicians benefit by targeting material transfers to core supporters or swing voters . The second step in the analysis is to test for potential effects on preferences. While we find no evidence of political targeting at the individual level, we do not claim that distribution was random. Accordingly, testing for political effects requires accounting for potential confounding factors. We employ two alternative methods for addressing possible omitted variables.

The Center aims to develop next-generation technologies to realize IoT-enabled precision agriculture

IoT4Ag launched its collaborative programs across the four NSF ERC pillars of convergent research, engineering workforce development, diversity and culture of inclusion, and innovation ecosystem. IoT4Ag research is creating novel, integrated systems that capture the microclimate and spatially, temporally, and compositionally map heterogeneous stresses for early detection and intervention to better outcomes in agricultural crop production. The Center is working to realize IoT technologies to optimize practices for every plant; from sensors, robotics, and energy and communication devices to data-driven models informed by plant physiology, soil, weather, management practices, and socio-economics. Diverse participant groups have been and continue to be recruited and are being educated through IoT4Ag workforce development and diversity & culture of inclusion programs to have strong science and engineering knowledge to create transformative, socially-just, engineered products and systems. The Center is working to build a workforce able to discover, innovate, translate, and practice precision agriculture solutions. IoT4Ag has established and continues to expand an innovation ecosystem and network with academic, industry, investment, and government partners and the end-user farming community to collaboratively build the future of precision agriculture. IoT4Ag’s research program aims to transform agriculture today and invent integrated systems to realize the farm of the future . IoT4Ag is working to create next-generation IoT sense-communication response technologies and establish engineered integrated systems for precision farming of tree crops and row crops, mainstays of the food supply chain.

The Center’s research is driven by the agricultural-specific use case of IoT, e.g., its scale, the environment, and the socioeconomics. It is pushing the fundamental scientific understanding and bringing together the tools of our disciplines, i.e., the fields of agronomy, agricultural engineering, agricultural economics, environmental science, and of chemistry and chemical engineering, computer science, and electrical, materials, mechanical, and systems engineering. It is propelling us, in partnership with our innovation ecosystem, to create “IoT4Ag breakthrough technologies” in sensors, robotics, and energy and communication devices to inform data-driven models constrained by plant physiology, soil, weather, management practices, and socioeconomics that enable the optimization of farming practices for every plant. Integrated systems engineered from these technologies are being designed to capture the microclimate and spatially, temporally, and compositionally map heterogeneous stresses for early detection and intervention to ensure better outcomes in agricultural crop production. The Center is structured into three thrusts that vertically integrate fundamental knowledge and technology from different disciplines and that are horizontally integrated to achieve next generation engineered systems for agriculture. The “flow” or “wiring” diagram in Fig. 3 portrays the scientist’s or engineer’s depiction of the structure and connectivity of the three thrusts to realize the sense-communication response integrated systems of the farm of the future to realize better outcomes in agricultural crop production. The diagram also shows the structure and connectivity of IoT4Ag thrusts and the requisite convergence of disciplinary expertise. Plant and environmental scientists are exploring the biotic and abiotic variables that affect crop health and are working together with engineers to design and specify sensors that are embedded in the field, to measure these variables from above and below the soil surface. Multi-mode sensors are being co-designed and co-created with energy and communications technologies for the agricultural use case that calls for sensor systems that require zero- or near-zero power, are low cost, can be deployed at large scale, are bio-compatible/biodegradable,hydroponic nft gully and can operate below the soil surface and in/below the canopy. Signals are transmitted at the “edge” to existing farm machinery or to ground and aerial robots, that are being adopted by the farming community.

Robots are being codesigned and equipped with energy and communications technologies to allow autonomous, coordinated multi-robot excursions at the large scale of agricultural fields and to receive and process signals at the edge, directly imaging the field and indirectly imaging sensors from above and below the canopy. A suite of Ag-specific backhaul technologies are investigated to transmit signals to the cloud in the characteristically remote and “unconnected” environments of agricultural fields. Multiple instance, multiple resolution sensor fusion techniques are being developed to unite the spatially, temporally, and compositionally heterogeneous sensor data. Models that are data-driven, and yet constrained by the biophysics of plant physiology, the soil, weather, and management practices are being created to “make the invisible visible” and provide “better data”. These models are being used to build a decision Ag interface, which coming full circle, allows farmers to intelligently manage their fields to ensure crop yield and resiliency in a cost-effective manner. Thrust 1 research is in the design and manufacture of resilient, networked, intelligent sensor-robotic systems that monitor the state of plant and soil health over extended areas. Thrust 1 is addressing fundamental scientific questions to uncover how the complex system of abiotic and biotic variables affect crop yield and resilience, and with this knowledge is designing technologies and systems that will be deployed with the spatial, temporal, and compositional resolution needed to capture the state of the field. Thrust 1 unites faculty research groups from eight departments across all four partner universities with expertise in plant and environmental science and in sensors, robotics, and mapping of agricultural fields. hrust 2 research is in enabling advanced approaches for powering IoT devices and robots in the field and for data communication from heterogeneous platforms of sensors, robots, and farming equipment. Thrust 2 is working to establish the knowledge and technologies specifically needed in agriculture, from powering devices and communicating from below the soil surface to deploying technologies at field scales.

Thrust 2 is composed of faculty groups from four departments and three of our universities with expertise in IoT sensor and robotic power and in edge and backhaul communication. Thrust 3 research is in building and deploying smart response systems that are driven by machine learning and decision-based models for precision agriculture. Thrust 3 is creating techniques to manage uncertainty and fuse the spatially, temporally, and compositionally heterogeneous data from the field to collect not just more, but better data. The thrust is building models, constrained by the biophysics of plants in agricultural fields, to establish a decision-Ag interface for growers to intelligently manage their fields in a cost-effective manner. Thrust 3 is brings together faculty groups from seven departments and our four universities with expertise in machine learning and sensor fusion and in controls and decision agriculture architectures. Fig. 4 is a Milestone Chart describing the work of the thrusts to deliver IoT4Ag technologies and to increase their complexity and scale over the lifetime of the Center to realize the two IoT4Ag testbeds, i.e., 1) Integrated Systems for Precision Farming of Row Crops and 2) Integrated Systems for Precision Farming of Tree Crops. In Year 1, 28 multi-institutional, multi-disciplinary, multi-thrust research projects vertically integrating the ERC 3-planes of fundamental knowledge, enabling technologies, and integrated systems across three horizontally integrated research thrusts were launched. A number of projects are operating within the IoT4Ag test beds. The fundamental knowledge and enabling technologies are intimately connected. For example, IoT4Ag is working to probe the theoretical limits of electromagnetics, important to understanding signals in the soil, canopy occlusion, and signal interference; to create of a suite of Ag-specific communication technologies that connect sensors located in remote and obstructed agricultural environments to the cloud. The Center is advancing materials properties and processes, e.g., from host guest chemistry to low-cost processable, biodegradable, and biocompatible materials, to realize sensors, that measure variables of interest, and energy devices, that operate in the soil, and allow agricultural field scale measurements. IoT4Ag is developing machine learning approaches to deliver robust predictive models that effectively capture site-to-site variability due to environmental changes and decision science to synthesize Decision Ag interventions that are interpretable, risk-based, and economically feasible. Finally, and coming full circle, IoT4Ag ‘sense communication-response’ technologies are impacting agronomy,aeroponic tower garden system addressing fundamental scientific questions such as understanding how abiotic and biotic variables affect crop yield and resilience. The Center is educating diverse groups of students and professionals to build and practice precision agricultural science, IoT technologies, and systems. IoT4Ag is engaging K-12 and community college students; through exhibits, kits, and lessons/labs with our partner schools, museums, and organizations; high-school students and teachers and community college and undergraduate students in research experiences; PhD and postdoctoral fellows in interdisciplinary research and intraCenter and international exchange; and agricultural professionals and growers through IoT4Ag Ag-extension programs.

IoT4Ag is committed to creating, sustaining, and promoting a diverse community by developing and delivering programs, based on good practices, to create transformative changes in engagement, equity, and inclusion of diverse groups in science and engineering and in the practice of agriculture that creates a lasting sense of belonging for Center members and a positive, productive, collaborative climate. The IoT4Ag ERC provides a platform of disciplinary, institutional, and demographic diversity amongst the core institutions and its partners in research, workforce development, and innovation ecosystem to unite and include diverse groups as they educate each other and work collaboratively to achieve the common goal of realizing food, energy, and water security to benefit society through the development of transformative, socially just engineered products. Diversity & Culture of Inclusion educational programs foster critical reflection about issues that intersect innovation and equity, such as facilitating technological access in underserved communities, ethics in agriculture, data governance, and algorithmic and implicit bias. IoT4Ag research efforts will lead to systems that combine state-of-the-art sensors, robotics, communications, and data science approaches for monitoring the state of a field of crops with high spatial and temporal resolution and making decisions on this data using bio-physically informed models. Even with successful achievement of the IoT4Ag mission to create and translate these precision agriculture technologies and systems, a mission which is necessary to realize the overarching vision of improved crop yields with less water, energy, and fertilizer use as outlined in Section I, it may not be sufficient. Technical and non-technical challenges that are outside the scope of the Center could limit the impact of IoT4Ag technologies and systems and prevent the vision from being achieved. Three primary risks are briefly discussed here. First, the Center will have highest impact if local interventions can be made quickly and cost effectively based on the data and insight provided by IoT4Ag integrated systems. The development of intervention approaches is not within the scope of IoT4Ag’s work, so these technologies must be developed by other researchers and companies. If approaches for local interventions do not advance quickly enough, IoT4Ag systems may have less impact than anticipated. To mitigate this risk, we are creating systems designed to work with both existing and more nascent local interventions. Furthermore, we are continually keeping track of the state of intervention technologies, in part through connections with industry members and end-users in the Center, and will adjust our technology road map based on internal and external advances. Second, IoT4Ag systems are being developed to take advantage of data from multiple sources, this includes our own sensors, commercial sensors and agricultural equipment, and public and private sources. Standards and policies for accessing, sharing, and using data from a number of these sources is quite variable and also evolving as precision agriculture technologies develop. We are working to mitigate this risk by engaging stakeholders, including end-users and agricultural companies, through the Center to understand perceptions and expectations regarding data privacy and accessibility. As we develop decision systems in Thrust 3, issues related to data standards and access are actively being addressed in our projects. Finally, IoT4Ag systems will only have impact if the technologies are adopted by end users. Adoption is not guaranteed even if the systems are engineered to meet performance targets and economic constraints. Adoption will also require education of end users on the benefits and implementation of IoT systems which are different from existing management practices. To mitigate this risk, we are and will engage with members of IoT4Ag’s ASAB and agricultural professionals, including crop consultants, through our research on adoption and our professional education activities as part of our workforce development, to identify routes and broadly disseminate information about IoT4Ag systems. The IoT4Ag logic model for the Center convergent research pillar is shown in Fig. 5. The model highlights the convergence of institutionally, disciplinarily, and demographically diverse IoT4Ag faculty and students from academia with partners in education, government, industry, and the end-user farming community.

The positive effect of linear habitat is more pronounced for bat species with structure-bound ecologies

Training programs should be led by African farmers who understand the nuanced underpinnings of each respective region, as opposed to outside actors. Some argue that “food sovereignty based on genuine agrarian reform, and the defense of land territory against land grabbing, offers a real alternative……is the only way to protect national food economies from predatory dumping, hoarding, and speculation” . However, if government self-sufficiency programs involve no costs to farmers, there is no competition or innate bias towards the wealthy who would theoretically consolidate and redistribute land at the expense of poorer farmers. In this model, it would be most important for there to be representation for peasant farmers in meetings with leadership to ensure the voice of their constituents are heard and integrated into the planning and implementation of food projects, but smallholders do not necessarily need to possess control over the food system in order for food security to be restored. The role of the government is important in streamlining and managing collections of effective indigenous stores of knowledge and heirloom seeds, consolidating and dispersing them through state programs that involve free or low costs training and seed. It is observed that “hen profits are not forthcoming for commercial products, companies lose interest in agricultural development, soil conservation…and in peasant farmers as consumers of seeds and fertilizers and producers of commodities” . Furthermore, when a nation’s exports diminish in value, its people do not become less hungry nor burn less energy; they must still be fed in the absence of capital to purchase imports. It is the duty of governments to prioritize efforts for the public good, where private enterprise and international markets fail to do so. The economic incentive for leadership lies within having a well-fed, and therefore,dutch buckets healthy and cognitively-engaged workforce; and in the ability to eventually invest in export-focused opportunities with less risk, once populations are adequately fed on domestic supplies.

It is imperative that at least some of the current export-focused efforts are redirected towards food self-sufficiency until rates of malnutrition decline and hunger remedied. As previously mentioned, rural areas of SADC nations lack much needed infrastructure and surplus storage facilities. This, among other things, eventually must change. In the meantime, more attainable goals include cultivating and pooling knowledge of agroecological methods and disseminating said knowledge through government extension networks. State programs such as these formerly existed in Southern and East African nations but were cut in favor of neoliberal interventions under the strict guidelines of structural adjustment programs. In the 1960s and 1970s, newly independent African nations deliberately focused on self-sufficiency efforts, even as almost all export relationships with former-colonial powers remained intact- an example for the present day. The production-driven approach of the first Green Revolution had many shortcomings. Participation in initiatives that promised greater yields, and subsequent higher earnings, required upfront investments that priced out certain groups. These programs privileged the relatively well off, leaving broadening wealth gaps in their wake and increased poverty and displacement among those hit hardest by hunger and malnutrition. Lessons from the past are meant to better inform the present, yet it is observed that new initiatives on the continent of Africa, specifically those led by the Gates Foundation’s Alliance for a New Green Revolution in Africa and agrochemical company, Monsanto, are repeating these mistakes. Numerous assessments of AGRA programs in East and Southern Africa determined that “here was no clear trend between the increased use of Green Revolution technologies and nutritional outcomes; instead, it depended on the particular historical, social and political context under which the changes took place. Gender and class relationships played a critical role in determining who gained from these technologies” . It is curious that contemporary initiatives continue to follow failed models.

Perhaps the repackaging and rebranding of past ideas has rendered old strategies unrecognizable to those who witnessed the first GR and are viewed as new innovations by those unaware of the 20th century program. Agribusiness corporatists have appropriated terms commonly used by grassroots and socially-focused organizations that promote food self sufficiency and bottom-up agriculture, conflating opposing ideologies and effectively convincing audiences and donors, as well as participants, that all programs which evoke the terms “food security” and “hunger alleviation” are equal. Often, vulnerable populations who, having been promised higher incomes and crop yields, readily convert lands for intensive agriculture before fully comprehending the complete and ongoing costs involved. Producing surpluses without the capacity to dry, preserve, store, and transport them results in food waste and continued missed opportunities for smallholders, having fruitlessly invested in exports without access to buyers. Such methods are in congruent with the fiscal realities and sociocultural orientations of the communities in which they are being promoted. Africa needs a new plan. Case studies of recent AGRA programs in Malawi and Tanzania demonstrate that costs are prohibitive for many smallholders, and those who take out loans or invest in upfront costs of participation neither see those costs offset by domestic nor export sales. In the best outcomes, smallholders quickly determined these programs are not profitable, lost interest, and had remaining capital to return to producing locally-preferred varieties. Export focused initiatives do not immediately address the local need for a greater diversity and quantity of food. Production-driven efforts for export and have been confused for hunger alleviation campaigns, but a corporate desire to prematurely push into new markets must not be mistaken for aid work. These initiatives carry multiple implied costs which go unmentioned in agribusiness marketing and branding schemes. In addition to royalty payments on proprietary seed, farmers pay for costly inputs and fertilizers, since such seed lacks resistance to local pests and climates. Industrial agriculture also produces waste contaminants in freshwater sources which need to be mitigated and managed using costly monitoring and purification technologies which rural Africa is unprepared to take on.

While it is easy to agree that there is a need to engage better techniques to improve food production and the distribution of surpluses in Southern and East Africa, it is not necessary that these approaches involve expensive proprietary seed. SADC nations need to adopt solutions which are tailored to the region, not blindly integrate those which have worked in the United States or for Asian Tigers. Addressing non-seed issues related to outputs, such as poor transportation, storage, and soils, for example, would have a substantially positive impact on food security for the continent. But the most immediately solution harnesses local talent and techniques and pushes these knowledge sets and applications across broader zones through state supported programming. Farmer-managed seed systems capture existing community assets, and governments can multiply their efforts. Intensive agriculture is a major driver of biodiversity loss, and predicted intensification of agriculture suggests major shifts in land use patterns and biodiversity . Agricultural intensification is characterized by increased chemical and mechanical inputs, limited non-crop vegetation, and lower levels of planned biodiversity . Although intensive agricultural production tends to erode biodiversity,grow bucket ecological communities provide substantial benefits to humans, such as suppression of crop pests . In many agroecosystems, insectivorous bats facilitate crop production by suppressing economically important insect pests . The negative consequences of intensive agricultural systems on biodiversity and ecosystem services have spurred the development of agroecological farming schemes that promote ecological interactions, lead to the provisioning of ecosystem services, and support biodiversity . Through the diversification of crops and habitats and the reduced use of pesticides, agroecological practices may improve habitat quality for insectivorous bats. These practices may increase bat dispersal across the landscape and provide more stable populations of insect prey, although bats in different functional guilds may have different responses to these practices. The addition of linear habitat – strips of perennial vegetation, such as treelines and hedgerows – can increase bat activity because many bat species utilize linear habitat as flyways for foraging and commuting . Linear habitats may reduce energy costs for commuting bats by providing shelter from wind and predators, increase foraging efficiency by concentrating insect prey, and serve as navigational aids . Open area bats are well-suited for crossing vast agricultural fields, whereas clutter adapted bats are more strongly associated with forest and tend to stay closer to linear habitat . Lower levels of pesticide applications and increased plant diversity may also improve foraging habitat quality for bats by providing a more abundant insect prey base, although this mechanism has not yet been tested. Insect communities are more abundant in organic systems with lower pesticide use levels . Intercropping, crop diversification, and the maintenance of non-crop vegetation can all help to maintain insect populations by providing a variety of insect habitat niches, which is especially important in annual cropping systems with frequent disturbances . Many studies that investigate the impact of agricultural intensification on bats focus on categorical comparisons of management intensity . These studies show mixed responses , perhaps because few studies consider both local farming practices and the effect of the surrounding landscape . Categorical comparisons are limited by the reality that farming practices likely vary within and may be shared among management intensity categories , making it difficult to pinpoint which practices drive observed patterns in biodiversity. Because bats respond to factors at both local and landscape scales , landscape context must be considered when evaluating the impact of local practices on bats.

Farms with similar practices may be spatially aggregated , making it difficult to disentangle the effects of local management practices from confounding landscape factors. A nested sampling design can be used to minimize variation in the surrounding landscape when evaluating the effect of local management intensity . Accounting for specific on-farm practices and minimizing variation in the surrounding landscape between paired farms provides a more nuanced understanding of which on-farm management strategies or practices are likely to impact bat conservation outcomes. Landscape-scale conservation efforts are important for bat conservation in agricultural landscapes , but may be challenging to coordinate among multiple private landowners . In productive agricultural regions, such as California’s Central Coast Region , the high cost of cropland encourages intensification, resulting in the conversion of perennial habitat to arable fields, the destruction of edge habitat, and simplified, homogenous landscapes . With little remaining natural habitat, few incentives for growers to restore habitat, and the challenges associated with coordinated grower participation, a focus on local management practices as conservation solutions may be a more effective approach than landscape-scale conservation efforts, although the efficacy of local practices may depend on the landscape surrounding the farm . We investigate how bats use farms compared to surrounding natural habitat, assess which local practices may benefit bats, and ask if the influence of local practices on bats depends on the surrounding land use. Specifically, we ask: 1) How do bat activity, species richness, diversity, and community composition differ among natural habitat, organic farms, and conventional farms? 2) Which on-farm management practices underlie any observed differences in bat activity, species richness, and diversity? 3) Which on-farm management practices influence insect abundance, and are these the same practices that influence bat activity? 4) Does the influence of on-farm management practices on bats depend on the amount of semi-natural habitat in the surrounding landscape? For each question, we explore bat activity for all bat species and by functional guild. We conducted acoustic surveys in the CCR and compared bat responses across site types and in response to local practices by comparing paired organic and conventional farms that vary in their adoption of agroecological farming practices. We hypothesized that focusing on specific practices would better explain bat activity, diversity, and richness than categorical comparisons between organic and conventional farms.We conducted research in the CCR, an economically and ecologically valuable area. Farms in the CCR produce 13% of vegetables in the USA . To understand how bats respond to agricultural intensification at the farm scale, we worked on farms and nearby natural areas in Santa Cruz, Santa Clara, San Benito, and Monterey Counties, CA within a 60 km by 70 km region . We selected woodland patches as natural habitat sites because remnant woodlands are important bat habitat in agricultural landscapes . Study sites in the CCR were selected to be representative of the range of farms and remnant woodland patches present in the study area using a combination of aerial imagery and based on the interest of private landowners and growers in participating in this research.

Pyrolysis temperature and time are both important variables in determining the properties of the final product

While biochar can be produced from a variety of feedstocks, the physical and chemical properties of biochar will vary depending on the type of feedstock and the pyrolysis process used to produce the material . Pyrolysis temperature refers to the highest treatment temperature achieved during the pyrolysis process and can range between 200 and 1000 °C . Additionally, various biochars show divergent effects on soil microbial activity, transport, and diversity, likely caused by indirect changes to the soil’s chemical properties . While not yet well investigated, both the feedstock and HTT will likely affect the suitability of biochars as carrier materials. The objectives of this study were to compare biochar materials to standard carriers with respect to promoted inoculum survival. Improved survival was related to physico-chemical properties of the biochar materials. Ideal physico-chemical properties were recognized and related to either feedstock or pyrolysis temperature. Overall, specific biochar feedstocks and production methods are identified for optimizing biocharinocula formulations.Carbon and nitrogen analysis was performed on a FlashEA 1112 Elemental Analyzer . Permanganate oxidizable carbon was determined using the method described by . Biochar pH and electrical conductivity measurements were determined using previously described methods . Briefly, 1 g of biochar was suspended in 20 mL deionized water and left shaking at 180 rpm for 1.5 h. The pH was measured using an Accumet® basic AB15 pH meter and electrical conductivity readings were determined using an Accumet® model 20 pH/conductivity meter . Biochar surface hydrophobicity was determined for dry, fresh biochar sieved through a 0.5 mm mesh using the molarity of an ethanol drop test . The MED values from 1– 2 indicate hydrophilic samples, 3– 4 are slightly to moderately hydrophobic, and 5-7 are strongly to extremely hydrophobic. As recommended by the International Biochar Initiative ,hydroponic nft channel specific surface areas were determined using the Brunauer, Emmett, and Teller N2 method on an ASAP 2020 Physisorption Analyzer as outlined in the Active Standard ASTM D6556 .

The percent water holding capacity for the carriers were determined after the materials were saturated in water for 24 hours, then allowed to air dry for 1 hr. Values for %WHC were calculated using the mass of water retained in the material per g dry material x 100. The physical structure and surface pore-opening diameters for the 300°C biochars were visualized using a Hitachi TM 1000 tabletop environmental scanning electron microscope . Pore-opening diameters were measured using TM-1000 software . Enterobacter cloacae UW5 was generously provided by Dr. Cheryl Patten . Microbial cultures were grown at 30°C, shaking at 170 r min-1 , in Luria-Bertani medium , unless otherwise specified. Electrocompetent UW5 cells were prepared using methods described by . UW5 cells were transformed with a rhizosphere stable plasmid, pSMC21, carrying a bright mutant of green fluorescent protein , provided here by Dr. Yanbin Guo. Transformation was carried out using 500 ng plasmid combined with100- 200 µL of competent cells, electroporated at 2.5 kV, 25µ , 250Ω, sing a 2 mm gap c vette in a Biorad GenePulser . Integration of plasmids was verified by selection on kanamycin medium and by microscopic observation of GFP expressing cells. Fluorescent microscopy visualization was performed on an Olympus IX71fluorescent microscope scope using a light excitation range 533– 583 nm, with an emission range of 607– 684 nm. The quantity of indole compounds produced by transformed cells was compared to that of wild type UW5 using Salkowski reagent and the S2/1 method described by . The UW5-pSMC21 transformants were screened for growth inhibition using growth curve analysis on a nutrient rich LB media and a carbon and nitrogen starvation response media prepared according to . The stability of plasmid pSMC21 in strain UW5 was assayed over a 2 week period. Cells were transferred daily to fresh Voigt media without kanamycin and at 3 d intervals cultures were serially diluted and spread onto plates with and without kanamycin. The percent of cells retaining plasmids was calculated based on differences in CFU counts on these plates.An Arlington sandy loam, collected from a field with previous agricultural history from the University of California, Riverside , was passed through a 4 mm sieve and used for all treatments. To prepare the liquid inoculum, UW5-pSMC21 cultures were grown overnight to late log phase in LB + kanamycin.

Cultures were washed twice with sterile 0.85% NaCl using 30 min centrifuge steps at 4000, 4°C. Washed cell pellets were brought to ½ initial culture volume with sterile 0.85% NaCl. This constituted the liquid inoculum, final cell density of 5.6 X 109 ± 0.3 CFU ml-1 , that was used for all treatments. Twenty milliliters of liquid inoculum were left shaking at 25 °C for 24 h with 2 g of carrier material in 125 ml flasks. Treatments were prepared by thoroughly mixing inoculated carriers with 20 g soil or by mixing 20 ml liquid inoculum directly into soil, providing a final carrier application rate of 1% . Four replicate microcosms were prepared for each treatment soil in 200 ml plastic cups with drainage holes and foam tops to allow water and air flow. DNA was extracted from each replicate after the initial inoculation. Microcosms were weighed daily and watered with deionized water to maintain microcosms at 60% field capacity. After 4 weeks a second round of DNA extractions were performed on all replicate microcosms. The soil DNA extractions served as templates for qPCR used to quantify GFP gene copy numbers.DNA was extracted from 0.25 g of soil using the PowerSoil® DNA isolation kit from MoBio Laboratories with modifications . All extractions were tested for purity and concentration using a NanoDrop 1000 . All qPCR reagents, protocols, and data analysis were performed within the standards outline by the MIQE guidelines . Reactions were set up using the SsoAdvanced universal SYBR® Green supermix and were run on a MyiQ® Thermal Cycler . For the survival study, GFP primers and qPCR cycle conditions and melt curve analyses were identical to those described in Chapter 2. All qPCR reactions involving sample DNA or control DNA templates were prepared in duplicate. All of the biochar materials tested here were shown to be useful as inoculum carriers for the PGPR strain E. cloacae UW5, but also varied in their efficacy. This appeared to be based on differences in the chemical and physical properties of the individual biochars. Among the materials, Pine600 was identified as the best biochar for use as an inoculum carrier. It performed as well as the industry standard carrier, peat moss,nft growing system and its use resulted in higher sustained population densities than did vermiculite. All biochars tested performed as well as vermiculite and none demonstrated detrimental effects on the UW5 population. Peat moss supported the highest cell density in samples analyzed after the 24 h inoculation procedure and also promoted the greatest survival after the 4-week soil incubation, which was slightly higher than that of the Pine600.

This was associated with the high availability of labile carbon and high nitrogen content of the peat . To identify specific characteristics that related to the survival outcomes, the biochars were assessed based on several chemical and physical parameters. All characteristics analyzed were highly variable among the various biochar materials, which is consistent with previously reported findings . The pyrolysis temperature had the greatest effects on pH and SSA, whereas feedstock type largely determined the % WHC of the biochars. Biochar pH and C:N ratio had the greatest effect on initial GFP copy numbers, which reflect the direct effect of the carrier on the inoculum during preparation. The population density was fit to pH via a Gaussian distribution, which identified an optimal pH range for biochar as an inoculum carrier for the test strain. After inoculation, the Pine300 biochar, which had a pH of 4.63, the lowest of the biochars, also supported the lowest starting cell density . However, after 4 weeks in the soil, this material supported cell densities that were similar to those supported by the other biochars and vermiculite. Also, when cell densities were compared after the 4-week incubation, there was no correlation between the biochar pH and survival. Hence, while the pH may have been initially influential, after application to the soil, this effect was no longer detected. Other variables associated with higher initial population densities were related to nitrogen in the char, lower C:N ratios and higher N contents. Saranya et al.also observed a positive influence of nitrogen when testing the shelf life of Azospriliium lipoferum soil inoculants on various biochars. However, in the present study, there was no relationship between biochar nitrogen contents and cell densities after 4 weeks of incubation. We also noted that the top performing carriers, Pine600 and peat, were moderately to strongly hydrophobic when tested as a dry materials, yet they have high % WHC’s. The hydrophobicity was assayed on dry materials, but % WHC values were obtained after 24 h of saturation. Hence, the hydrophobicity of the dry biochar does not appear to be a key concern when evaluating the utility of biochar as an inoculum carrier. This also indicates the importance of sufficient inoculation periods to ensure infiltration of the material if using liquid inoculum. Survival of the introduced PGPR strain UW5 after 4 weeks in non-sterile soil was strongly correlated with the C:N ratios of the biochar materials. Soil C:N ratios can influence soil microbial community composition and in particular have shown positivecorrelations with total phospholipid fatty acids . In agreement with this finding, a recent study demonstrated a positive relationship between the C:N ratio of biochar-amended soils and soil total PL A’s and bacterial PL A’s, in particular . However, Jindo et al.report a negative correlation between C:N ratio and bacterial biomass in biochar-compost mixtures. Altogether these findings indicate that biochar application will influence soil C:N ratios, and that C:N ratio will have an important effect on soil bacteria, but that this effect may be inconsistent across variable soil types. Several other parameters were related to week 4 survival when fit to Gaussian models. In particular, biochars having SSA’s, pore-opening diameters, and % WHC’s in the mid ranges maintained greater UW5 population sizes.

These physical characteristics depend on the surface structure of the biochar materials. Two of the biochars, Pit600 and Shell600, had the highest SSA’s b t did not res lt in improved inoculum survival. Previous research demonstrated that biochars prepared from the same feedstocks had increasing microporosity and SSA’s with increasing final HTT’s . These materials may have a large volume of nano– micropores, which are not accessible to bacteria and thus do not reflect the functional carrier capacity of the material. In fact, macroporosity often makes up only a small portion of the total surface area on biochar particles . The pore-opening diameters will determine which fauna are excluded from the biochar interior pore space and whether they are accessible to bacterial inoculants. Here we only visualized the pore-openings of the 300°C biochars, based on the ass mption that the higher HTT’s will have a significant effect on micro to nanoporosity which was measured by SSA, not the macropores we visualized using ESEM. The materials closely resemble that of the feedstock at a cellular level, as has been reported previously . The biochars with pore-opening diameters between 26 and 46 µm were ideal. Pores in this size range could play a significant role in protecting pre-established colonies from predation. Overall, pretreatment of chars can change some of their chemical properties but, unless blocked, pore-openings are not easily distorted. Thus, the physical properties and surface features of a potential feedstock should be an important consideration when selecting a biocharbased carrier. The effect of PGPR on native microbial communities will significantly impact its utility as an agricultural soil amendment. To assess the bio-availability of residual phosphorus in biosolid-derived biochars it is important to consider the mineral phosphate solubilizing microbial community. In soils phosphate is frequently complexed by calcium , iron , or aluminum , making it insoluble and unavailable to plants . This is also the case with the residual P in biosolid-derived biochar studied here, where P is predominantly complexed as Al and possibly Ca phosphates .

Heatmaps were generated using the agglomerative clustering analysis in nSolver software

Wild resources are gathered for ritual purposes or to provide nutrients inadequately supplied by cultigens; other categories of use, such as medicinal plants, are of constant but low-intensity demand. In India today, parts of the acacia species Acacia nilotica are used as medicine , as are the leaves and juice of chenopodium . Other medicinal plants include Acacia catechu, used as an astringent, Acacia leucophloea, which provides a medicinally-useful gum, and Achyranthes aspera . Nineteenth-century documents from the Deccan region show that forest resources and other non-cultigens were also used as fodder, fuel, resins, dyes, and tannins, sources of lac and wax, and timber for crafts and structures . These flora would have been available within a 20-kilometer radius of Kaundinyapura in Early Historic times, when forest resources were more abundant than at present . The presence of Acacia arabica and Acacia cf. nilotica in the archaeobotanical record of Early Historic India confirms that the plant was known, available, and used. Acacia nilotica, also known as “Indian gum arabic,” is a multipurpose source of fuel as well as being suitable for load-bearing components like handles and cart-axles. Ethnographic observations show that the pods are eaten by cattle, goats, and sheep; the gum is used in printing and dyeing of cotton and silk; the bark can be treated to render a substitute for soap; and unripe pods are used for ink . Applying these examples as a model for the premodern era at Kaundinyapura, tannin extracted from Acacia leucophlaea, Acacia nilotica, and Anogeissus latifolia could have been used to convert surplus domestic animals into hides suitable for exchange,blueberry grow pot while cloth from locally-produced cotton could have been enhanced by dyes from wild plants such as Carthamus tinctoris as well as several Acacia species.

Agricultural workers are at increased risk for developing various respiratory diseases including chronic bronchitis, asthma, and COPD, due in part to exposure to respirable organic dusts associated with these environments . Individuals that work in concentrated animal feeding operations, such as those housing swine, have appreciably increased risk for negative lung health outcomes . Therapeutic options for affected individuals are limited, with no current treatments to reverse lung function decline associated with these ailments . Thus, novel treatment strategies that harness and/or promote reparative processes in the lung are necessary. It is increasingly appreciated that inflammation resolution is an active process and regulated by a variety of pathways and mediators, some of which involve omega-3 and omega-6 polyunsaturated fatty acids . As ω-3 PUFA are essential fatty acids that cannot be synthesized de novo by humans, dietary consumption of ω-3 PUFA dictates the tissue availability for these fatty acids and mediators derived from them. In a typical Western diet, ω-3 PUFA intakes are below recommended guidelines, while ω-6 PUFA intakes are high . Conversely to ω-3 PUFA, ω-6 PUFA are metabolized into lipid mediators that are largely involved in the induction of inflammatory processes . Thus, individuals consuming a diet with a high ω-6: ω-3 PUFA ratio may be at increased risk for inadequate control of inflammatory processes, with increased substrate to produce pro-inflammatory lipid mediators and a dearth of substrate for the production of specialized pro-resolving mediators . We have recently assessed the efficacy of dietary supplementation with the ω-3 PUFA docosahexaenoic acid on altering the lung inflammatory response and recovery following acute and repetitive organic dust exposure . Mice were fed a mouse chow supplemented with DHA for four consecutive weeks prior to challenge with a single DE exposure or DE challenge over 3 weeks . In these investigations, we identified impacts of a high DHA diet on lung inflammation, including alterations in macrophage activation, that were overall protective against the deleterious impacts of DE exposure. However, these studies were limited in that they only assessed the impacts of one ω-3 PUFA, DHA, on male sex and on a limited dietary regimen of 4–7 weeks .

Sex-specific differences in respiratory symptoms are observed among the asthmatic individuals and agricultural workers with asthma being more common in women than men and respiratory symptoms being more prevalent in men than women among the farmers . To better assess the impacts of a high ω-3 PUFA diet on the lung inflammatory response to DE and achieve a total tissue ω-6: ω-3 PUFA ratio of ∼1:1 that is considered ideal, we have now utilized the Fat-1 mouse transgenic model to better assess the sex-specific impacts of ω-3 PUFA on DEinduced inflammation. These mice express the Caenorhabditis elegans fatty acid desaturase gene that converts ω-6 PUFA to ω-3 PUFA, thus yielding an overall tissue ratio of ∼1:1. We hypothesized that use of this model would enhance the protective effects identified in initial studies utilizing only DHA supplementation, while also overcoming study limitations that plague fatty acid supplementation investigations, including ambiguous outcomes due to different fatty acid sources, purity, doses, and duration of supplementation . In addition, we have also tested a strategy to further enhance the efficacy of ω-3 PUFAs through the use of a therapeutic inhibitor of soluble epoxide hydrolase an enzyme that metabolizes lipid mediators such as SPM into inactive or less active forms . Through these investigations, we have clarified a role for ω-3 PUFA in regulating the initiation of lung inflammation following DE inhalation and identified differentially regulated genes in repair and recovery following these exposures. These studies warrant consideration of ω-3 PUFA supplementation as a complementary therapeutic strategy for protecting against the deleterious lung diseases associated with environmental dust exposures, such as those experienced by agriculture workers.Settled dusts in closed swine confinement facilities were collected one foot above the ground and kept at −20°C. Dust extracts were prepared as previously described . Briefly, 5 g dust was mixed with 50 ml Hank’s Balanced Salt Solution at room temperature for 1 h. The mixture was then centrifuged at 2,500 rpm for 20 min at 4° C, supernatant was centrifuged one more time and resultant supernatant was sterile filtered using a 0.22 μm filter. Extracts were aliquoted, labeled as 100% dust extract and kept frozen at −20° C. A 12.5% DE solution was prepared for use in mouse intranasal instillations by diluting the 100% extract with sterile saline. Detailed analyses of the DE have been performed previously .

A previous study compared immune response to the agricultural dust administered via intranasal instillation and 100 µg LPS challenge in mice , which has been estimated to be approximately 250× more than the LPS in 12.5% DE. In this same study, the mean endotoxin levels have been reported to be 0.384 μg/ml. Given this finding, when we administer 50 µL DE via intranasal route, this would correspond to approximately 20 ng LPS. In addition, other studies report respirable LPS levels to be between 14–129 EU/mL .At the end of the three-week period, mice were euthanized, and trachea were cannulated to obtain bronchoalveolar lavage fluid from each mouse. Collection of BALF included three times washing with 1 ml PBS each time. All washes were centrifuged at 1,200 rpm for 5 min. While the first wash was kept separate, the second and third washes were combined before centrifugation. The supernatant from the first wash was aliquoted and stored in −80° C for cytokine profiling. The pelleted cells obtained from all the washes were combined and counted. Cytospin slides were prepared using 100,000 cells, stained with Diff-Quik kit and differential cell counts were obtained as described before .For histopathological assessments,hydroponic bucket lungs were inflated with 10% buffered formalin at 15 cm pressure. The same mouse lungs that were lavaged with PBS to obtain BALF was used for histology. Fixed lungs were transferred into 70% ethanol and then shipped to UC Irvine Pathology Research Services Core for paraffin embedding, sectioning, and Hematoxylin and Eosin staining. The observer was blinded to the identity of each slide. A lymphoid aggregate was defined as close aggregation of ≥20 lymphocytes. Alveolar cellularity was evaluated by the number of cells in the alveolar spaces in the lung parenchyma in a total of five images obtained throughout the whole lung using 40× objective with 150% optical zoom. The resulting five values were averaged per tissue section. Each histopathological evaluation was represented as percentiles and a score between 0-to-4 was assigned for each percentile.A mouse NanoString Immunology panel was purchased for direct counting of 561 RNA transcripts using a nCounter Sprint Profiler. Each mouse lung was immediately put into 1 ml of RNA Later, kept at 4°C overnight, then stored in RNA Later at −80° C until RNA extraction. A total of three male mouse lungs per group obtained from three independent studies were thawed for RNA extraction. After lung samples were rinsed in sterile PBS, they were homogenized in 1 ml of Trizol using a 7 cm polypropylene pellet pestle in a microtube, then the extraction was performed as per manufacturer’s instructions using a PureLink RNA mini kit . RNA integrity number was obtained for each sample at the UC Riverside Institute for Integrative Genome Biology Core Facility using an Agilent Bioanalyzer 2,100 . Samples were prepared by a 16-h hybridization step of 50 ng RNA with the codeset probe provided in the Immunology panel. At the end of the hybridization, samples were diluted with nuclease-free water to 35 μL, and 32 µL of each sample was loaded onto a nCounter Sprint Cartridge. Given each cartridge can hold up to 12 samples, a total of 24 samples were run on two cartridges. All samples passed the QC test without any QC flags. The data resulting from each run were combined and analyzed together using nSolver 4.0 and NanoString Advanced analysis. On the nSolver software, gene expression data were normalized using ten housekeeping genes that showed strong correlation with each other, these included Rpl19, Alas1, Ppia, Oaz1, Sdha, Eef1g, Gusb, Gapdh, Hprt and Tbp.

For the advanced analysis, at least three housekeeping genes whose expression correlated well with each other , and thus ideal for normalization of the data were used to normalize the raw data , and a 77 transcript counts were taken as “count threshold”, which is two times the highest background to-noise ratio . Advanced analysis produced differential expression analysis, gene set analysis, and pathway scores. Differential expression outcomes identified the top 20 most upregulated genes among all the treatments, while gene set analysis displayed which pathways those most upregulated genes are related to. To further explore the protein-protein interactions among differentially regulated proteins, we used the STRING database of genes that were statistically significant based on the unadjusted p-values . Genes with low counts were not included in any of the analyses. The lungs are continually exposed to harmful stimuli found in the air, including environmental dusts, diesel exhaust particles, and smoke exposures. The ability of the airways to respond to these stimuli and repair damage caused by the exposures is vital to respiratory health, because unrepaired damage can lead to debilitating airway diseases . Long-term particulate matter exposures have been consistently linked to negative cardiovascular and lung health outcomes and increased mortality . Disease susceptibility caused by chronic inhalation of particulates is clearly evidenced by occupational exposures such as those seen in agriculture workers; exposures to livestock farming operations are consistently linked to increased respiratory symptoms and inflammatory lung disease in not only workers, but in individuals living in the surrounding communities, including children and adults . Approximately two-thirds of agriculture workers report respiratory disease; 50% of agriculture industry workers experience asthma-like symptoms ,25–35% of individuals working in concentrated animal feeding operations experience chronic bronchitis , and the prevalence of chronic obstructive pulmonary disease among agriculture workers is doubled compared to non-farming working control subjects . Curative options are not available for these workers, with current therapeutic options aimed primarily at symptom management and the prevention of lung disease. To improve treatment options for this population, studies investigating therapeutic mechanisms to stimulate endogenous lung tissue repair mechanisms are warranted. To this end, we have assessed the impacts of a low ω-6: ω-3 PUFA total body tissue ratio on lung inflammation following repetitive exposure to inhaled environmental dusts, using a well described mouse model of DE inhalation. In addition, we have explored the therapeutic utility of an sEH inhibitor, TPPU, in enhancing the impacts of high ω-3 PUFA tissue levels, including exploring its effects in regulating SPM levels during inflammation resolution.