Iron is an important element for many biological processes in plant growth and development

In addition, the average fresh weight and diameter of the fruits from the 869T2-inoculated plants were greater than those of the control plants , although the average fruit lengths were similar. These data demonstrate that the okra fruits became heavier and wider after inoculation with strain 869T2. In summary, inoculation of strain 869T2 into hot pepper and okra plants could cause plants to flower at earlier growth stages.The members of the genus Burkholderia belong to the class β-proteobacteria and have a broad distribution, residing universally in soil, water, and in association with plants, fungi, animals, and humans. Some Burkholderia species are plant pathogens in many vegetables and fruits, while others have been reported as opportunistic pathogens of humans and other animals. However, many other Burkholderia species are beneficial to plants, suppressing plant diseases and promoting plant growth by various processes, including the production of antibiotics, secretion of allelochemicals, induction of pathogen resistance in plants, nitrogen fixation, or enhancing nutrient uptake by host plants. These beneficial Burkholderia species are free-living or endophytic and form mutualistic associations with their host plants. Burkholderia species’ high versatility and adaptability to different ecological niches rely on the high genomic plasticity of their large multichromosome genomes and the production of various bacteria secondary metabolites. In this study, we characterized the endophytic bacterium Burkholderia seminalis strain 869T2 isolated from vetiver grass, outdoor vertical plant stands which was recently described and included in the Burkholderia cepacia complex. We have documented the IAA production, siderophore synthesis, and phosphate solubilization abilities of B. seminalis strain 869T2.

Inoculations of strain 869T2 into tested plants demonstrated the plant growth promotion ability of this bacterium in several plant species from the Brassicaceae, Asteraceae, and Amaranthaceae families. Plant endophytic bacteria can increase the nutrient uptake and biomass accumulation of host plants through the production or regulation of various plant hormones, such as auxin, cytokinin, gibberellins, and ethylene. Indole acetic acid is a naturally occurring auxin produced by several endophytic bacterial species through the L-tryptophan metabolism pathway. Tryptophan can exist in the exudates of plants and is utilized by the bacteria to synthesize auxin, which enhances the growth of host plants. Auxin is the major plant hormone that regulates various aspects of plant growth and development, such as root initiation and development, leaf formation, fruit development, floral initiation and patterning, phototropism, and embryogenesis. Several plant-growth promoting bacteria can synthesize IAA, including Bacillus, Burkholderia, and Pseudomonas species. In this study, Burkholderia seminalis strain 869T2 was able to synthesize approximately 2.0 to 2.2 µg mL1 IAA in the presence of tryptophan and increased both the above ground and below ground biomass of tested plant tissues. Several previous reports also demonstrated that low levels of IAA stimulated primary root growth. Similar to our observations, the Burkholderia sp. SSG that was isolated from boxwood leaves produced 2.9 to 4.5 µg mL1 of IAA with tryptophan and had plant growth promotion ability in three boxwood varieties. Additionally, Burkholderia phytofirmans strain PsJN, which was isolated from onion roots, showed higher IAA production, around 12 µg mL1 , with the addition of tryptophan and improved the growth of potato, tomato, maize, and grapevines. Other Burkholderia seminalis strains can also synthesize IAA and have been reported to increase rice and tomato seedling growth.

These previous studies, along with our observations, suggest that B. seminalis strain 869T2 may be similar to other Burkholderia species and other plant-growth-promoting bacteria that utilize IAA to increase root growth, which may assist host plants in taking up nutrients from the surrounding environment and improve aerial tissue growth. Consistent with this hypothesis, we observed that plant size, height, fresh weight, dry weight, and total leaf areas of several tested plant species all significantly increased after inoculation with B. seminalis strain 869T2. It is known that the IAA can positively affect cell division, enlargement, tissue differentiation, root formation, and the control process of nutrition growth. The IAA can also function as a signal molecule to influence the expression of various genes involved in energy metabolism and other plant hormone synthesis, such as gibberellin and ethylene. Interestingly, we observed earlier flowering in the 869T2-inoculated hot pepper and okra plants, suggesting that acceleration of plant growth rates might occur in these plants. In the future, transcriptome analysis of plant hormone response genes and energy-metabolic-related genes in the 869T2-inoculated plants might help us further decipher the possible mechanism of plant growth promotion ability of strain 869T2. From the results of our study, we observed that B. seminalis strain 869T2 had a better IAA yield at a temperature range of 25 C to 37 C and pH of 6 to 9. Similarly, Burkholderia pyrrocinia strain JK-SH007 reached the maximum production of IAA at 37 C and pH 7.0. Several other plant-growth-promoting bacteria, including Bacillus siamensis, Bacillus megaterium, Bacillus subtilis, and Bacillus cereus, had relatively higher IAA yields at temperatures of 2–135 C and pH 7–8. Three different bacteria isolated from therhizosphere of Stevia rebaudiana also exhibited greater production of IAA at a pH range of 6–9 and a temperature of 35 C to 37 C; these bacteria also increased the root and shoot bio-masses of wheat and mung bean.

Various carbon sources are used as an energy source for IAA production and could enhance recycling of cofactors in bacterial cells. Our results revealed that IAA yields of B. seminalis strain 869T2 were slightly better when glucose and fructose were used in media. Several previous publications also indicated that the ability of plant-growth-promoting bacteria to produce IAA was different, depending on the carbon source used in the media. Results from these studies and our study demonstrated that IAA production by different plant-growth promoting bacteria can be influenced by various factors, such as temperature, pH, carbon sources, culture conditions, and bacterial species. In this study, we utilized the colorimetric method to estimate the IAA amounts of B. seminalis strain 869T2 when grown in various in vitro conditions and media. Because the available tryptophan in the rhizosphere and root exudates of plants might be relatively lower than the tryptophan used in the media, the IAA production of B. seminalis strain 869T2 when grown in inoculated plants shall be determined with more sensitive and accurate methods, such as high-performance liquid chromatography or ultra-performance liquid chromatography systems. Apart from the IAA production ability of B. seminalis strain 869T2, this bacterium exhibited siderophore production and phosphate solubilization activities.Most iron in soils is present in the highly insoluble ferric form,vertical plant rack which is unavailable for plant absorption. Endophytic bacteria can yield iron-chelating agents such as siderophores, which bind ferric iron and help transport it into plant cells via root-mediated degradation of organic chelate, ligand exchange, or other mechanisms. Phosphorus is another essential macro-nutrient for numerous metabolism processes in plants, such as biosynthesis of macromolecules, signal transduction, photosynthesis, and respiration. Most of the phosphorus in soil is insoluble and not available for root uptake to support plant growth. In order to increase the bio-availability of phosphorus for plants, certain endophytic bacteria turn insoluble phosphate into soluble forms via the processes of chelation, ion exchange, acidification, or production of organic acids. Previous studies have also correlated siderophore production and phosphate solubilization abilities with the plant growth promotion traits of other Burkholderia species, such as the Burkholderia sp. SSG isolated from boxwood and the Burkholderia sp. MSSP isolated from root nodules of Mimosa pudica. Burkholderia cenocepacia strain CR318, which was isolated from maize roots, significantly enhanced maize plant growth by solubilizing inorganic tricalcium phosphate. Other studies have revealed that additional Burkholderia species also have the ability to solubilize inorganic phosphate to increase available phosphorous in agricultural soils and improve agricultural production. In summary, both previous studies and our results suggest that the IAA synthesis, siderophore production, and phosphate solubilization abilities of B. seminalis strain 869T2 may collectively contribute to the growth enhancement observed in the several plant species tested here.

We successfully inoculated and reisolated B. seminalis strain 869T2, which was originally isolated from the monocot plant vetiver grass, in several eudicot plant species of the Brassicaceae, Asteraceae, Amaranthaceae, Solanaceae, and Malvaceae families. Strain 869T2 can significantly improve the growth of both the roots and aerial parts of Arabidopsis and several leafy vegetables, including ching chiang pak choi, pak choi, loose-leaf lettuce, romaine lettuce, red leaf lettuce, and Chinese amaranth. These results suggest that the endophytic bacterium strain 869T2 may have a wide host range. A similar observation was reported for Burkholderia phytofirmans strain PsJN, first isolated from onion roots, which enhanced the growth of Arabidopsis, switch-grass, potato, tomato, maize, wheat, and grapevines. We did not observe significant growth improvement in hot pepper or okra plants after inoculation with strain 869T2; however, we did observe early flowering and better fruit development in these tested plants. These results suggest that the plant growth promotion abilities of strain 869T2might be more apparent in crops with a shorter life cycle or that the latter two tested host plant species might not be fully compatible with this bacterium. The plant colonization process and growth promotion abilities of endophytic bacteria seem to be active processes that are regulated by different characteristics of both the host plants and bacteria. In conclusion, our study revealed the potential of Burkholderia seminalis strain 869T2 for use as a bio-inoculant in agriculture to improve plant growth and production. The balance between C3 carbon fixation and photorespiration depends on the relative amounts of CO2 and O2 entering the active site of Rubisco and the specificity of the enzyme for each gas. Atmospheric concentrations of CO2 and O2 are currently 0.04% and 20.94%, respectively, yielding a CO2 :O2 ratio of 0.0019. Gaseous CO2 , however, is much more soluble in water than O2 , and so the CO2 :O2 ratio near the chloroplast, the part of a cell where these reactions occur, is about 0.026 at 25°C. Rubisco has about a 50-fold to 100-fold greater specificity for CO2 than O2. Together, because of the relative concentrations of and specificity for CO2 over O2 , Rubisco catalyzes about two to three cycles of C3 carbon fixation for every cycle of photorespiration under current atmospheres. Conditions that inhibit photorespiration—namely, high CO2, or low O2 atmospheric concentrations—stimulate carbon fixation in the short term by about 35%. Temperature influences the balance between C3 carbon fixation and photo respiration in two ways. First, as temperature rises, the solubility of CO2 in water decreases more than the solubility of O2, resulting in a lower CO2:O2 ratio. Second, the enzymatic properties of Rubisco shift with increasing temperature, stimulating the reaction with O2 to a greater degree than the one with CO2. Warmer temperatures, therefore, favor photo respiration over C3 carbon fixation, and photosynthetic conversion of absorbed light into sugars becomes less efficient. Based on the temperature response of Rubisco carboxylation and oxygenation, C4 plants should be more competitive in regions where the mean monthly air temperature exceeds 22°C. Overall, Rubisco seems a vestige of the high CO2 and low O2 atmospheres under which plants first evolved. To compensate for the shortcomings of Rubisco, some plants employ CO2 pumping mechanisms such as C4 carbon fixation that elevate CO2 concentrations at the active site of the enzyme. The C4 pathway is one of the most convergent evolutionary adaptations in life with at least 66 independent origins. Extensive efforts are underway to emulate Mother Nature and transfer the C4 pathway into rice and other C3 crops. Explanations for the decline in plant protein concentrations at elevated CO2 include: plants under elevated CO2 grow larger, diluting the protein within their tissues ; carbohydrates accumulate within leaves, down-regulating the amount of the most prevalent protein Rubisco ; carbon enrichment of the rhizosphere leads to progressively greater limitations in the soil N available to plants ; and elevated CO2 directly inhibits plant N metabolism, especially the assimilation of NO3 – into proteins in shoots of C3 plants. Recently, several independent meta-analyses conclude that this last explanation is the one most consistent with observations from hundreds of studies. Information about the biochemistry of RuBP oxygenation is limited.